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Abstract

Bargaining games, where agents attempt to agree on how to split a
total utility, are an important class of games used to study economic be-
havior, which motivates a study of online learning algorithms in these
games. In this work, we tackle when no-regret learning algorithms con-
verge to Nash equilibria in bargaining games. While recent results have
shown that online algorithms related to Follow the Regularized Leader
(FTRL) converge to Nash equilibria (NE) in a wide variety of games, in-
cluding zero-sum games, this does not include bargaining games. Because
of the possibility of take-it-or-leave-it offers, bargaining games are not
zero-sum or the like. This includes the ultimatum game, which features a
single take-it-or-leave-it offer. Nonetheless, we establish that FTRL (with-
out the modifications necessary for zero-sum games) achieves last-iterate
convergence to an approximate NE in the ultimatum game. Further, we
provide experimental results to demonstrate that asymmetric initial con-
ditions can cause convergence to asymmetric NE, both in the ultimatum
game and in bargaining games with multiple rounds. In doing so, this
work demonstrates how complex economic behavior (e.g. learning to use
threats and the existence of many possible outcomes) can result from us-
ing a simple learning algorithm, and that FTRL can converge to equilibria
in a more diverse set of games than previously known.

1 Introduction

Bargaining games are an important class of games that have implications across
a range of economic behavior, including price setting, wage setting, and firm
interactions in a market (Korenok and Munro, 2021; Feri and Gantner, 2011;
Prasad et al., 2019). Further, the Ultimatum game is a kind of bargaining
game whose variations have been studied extensively to understand fairness
norms (Debove et al., 2016; Falk and Fischbacher, 2006; Nowak et al., 2000;
Rand et al., 2013; Thaler, 1988). So, it is important to understand how agents
learn to play strategies in these game, and we consider the setting where agents
learn bargaining strategies online. However, bargaining games inherently involve
non-convex utility functions due to discontinuities of deal breakdowns and this
makes learning, let alone online learning, difficult in general.



The goal for a successful online learning algorithm in this setting is to achieve
no-regret for a single agent learning and to achieve last-iterate convergence to
Nash equilibrium when multiple agents are learning. The no-regret guarantee
provides a motivation for why an agent would use such a procedure to choose
a strategy in the first place while the last-iterate convergence guarantee gives
a realistic guarantee for how agents would use a strategy they learn online.
The online algorithm we use is the popular no-regret algorithm Follow-the-
Regularized-Leader (FTRL) (Shalev-Shwartz et al., 2012). In particular, FTRL
and its variants have been previously been used to establish last-iterate con-
vergence results in a variety of games, including monotone games, non-negative
regret games, and strictly variationally stable games (Anagnostides et al., 2022;
Giannou et al., 2021; Hsieh et al., 2021; Vlatakis-Gkaragkounis et al., 2020).

Brgaining games do not have the properties previously necessary to prove
last-iterate convergence in any online learning setting: They do not have concave
utility functions, are not zero-sum, not equivalent to a potential game, and
need not have strict Nash equilibrium solution concepts which implies they are
sometimes degenerate and not strictly variationally stable. Further, bargaining
games have infinitely many Nash equilibria ! and even sometimes infinitely
many subgame perfect equilibria in some extensive form multi-round bargaining
games (Ponsati and Sékovics, 1998). Thus, there are two interesting questions
to be answered for online learning in bargaining games.

e Does FTRL converge in the last-iterate to any kind of Nash equilibrium
in bargaining games?

e Are there multiple different Nash equilibrium outcomes FTRL converges
to?

In this work, we consider two kinds of bargaining games: the Ultimatum game
and a 2 round alternating bargaining game. Previous work shows the possibility
of last-iterate convergence to Nash equilibrium for the Ultimatum game under
FTRL with ¢; norm and particular learning rates (Kamp and Fish, 2024). How-
ever, this version of FTRL is not no-regret, so we provide the following stronger
guarantees which answer both of our questions in the affirmative:

e FTRL with the Euclidean regularizer, any learning rate, and any initial
strategy choice achieves last-iterate convergence to an e-Nash equilibrium
in the normal form Ultimatum game.

e Experiments reveal FTRL converges to a variety of Nash equilibria in both
the normal form Ultimatum game and the 2-round alternating bargaining
game in the extensive form.

The first implication of these results is that FTRL may enjoy stronger guar-
antees of last-iterate convergence given the difference in properties of bargaining
games and previous classes of games where convergence results hold. Further,

ISee (Osborne, 1990) for an overview of Bargaining games.



since FTRL simultaneously achieves no-regret for a single learner and last-
iterate convergence to a Nash equilibrium in at least one kind of bargaining
game, this opens the possibility for strong learning guarantees in other varia-
tions of bargaining games.

Next, we observe that FTRL converges to many different Nash equilibrium
outcomes, depending on the initial conditions of the algorithm. In some set-
tings, such as wage or price setting, there are important fairness concerns for
which Nash equilibrium agents play at. In particular, any asymmetric Nash
equilibrium outcome where equal-merit agents are getting different payoffs can
potentially be considered an unfair, yet stable outcome (Fish and Stark, 2022;
Kamp and Fish, 2024). Given this concern along with the aforementioned in-
terest in understanding the multiplicity of outcomes in real world experiments
of the Ultimatum game, there is value in our results since we make progress
in describing how agents choose bargaining strategies. To highlight the impor-
tance of these concerns, we choose a model which simulates a wage negotiation
process between a single firm f and a single worker w. The agents bargain over
the split of the surplus generated by the worker’s employment normalized to 1
and we assume both agents are equally entitled to the surplus. Additionally, we
interpret our experimental results through this lens to demonstrate how FTRL
allows for threat-like behavior to develop while learning in order for one agent
to improve their payoff compared to other equilibrium outcomes.

In Section 2, we review related work and highlight how our setting is different
from previous last-iterate convergence guarantees. In Section 3 we introduce our
model and the bargaining games we consider and in Section 4 we introduce the
learning setting for these games. In Section 5, we present our theoretical con-
tribution and in Section 6 we discuss experimental results. Finally, we conclude
with a discussion and future work in Section 7.

2 Related Work

There is extensive literature on online learning in games, and we provide compar-
isons to only a select few papers to highlight the relevant differences between
bargaining games and previous classes of games that have last-iterate Nash
equilibrium convergence guarantees. To start, we prove convergence to a mized
Nash equilibrium in our theoretical results, but since our game is degenerate
the impossibility result of Vlatakis-Gkaragkounis et al. (2020) does preclude
our results.

Next, the bargaining game we consider is not strictly variationally stable (Az-
izian et al., 2021; Hsieh et al., 2021; Mertikopoulos and Zhou, 2019), does not
have strict Nash equilibria (Giannou et al., 2021; Vlatakis-Gkaragkounis et al.,
2020), is not zero-sum (Cai et al., 2024; Gilpin et al., 2012), is not monotone (Cai
et al., 2022), is not a non-negative regret game or equivalent to a potential
game (Anagnostides et al., 2022), and is not an auction game (Deng et al.,
2022).

Finally, previous work shows convergence of weakly acyclic games (which



includes our bargaining game) to Nash equilibrium (Marden et al., 2007) and
convergence of the normal form Ultimatum game to Nash equilibrium under
FTRL with an ¢; regularizer and particular learning rates(Kamp and Fish,
2024). However, both works use algorithms that are not no-regret, so our result
that FTRL can simultaneously get no-regret and convergence in the last-iterate
to a Nash equilibrium is quite stronger.

3 Bargaining Games

The setting we consider is a bargaining game between a single firm f and a single
worker w. We assume the agents are bargaining over the split of a surplus
normalized to 1. We assume throughout that the firm is always the first to
propose a surplus split and the worker is always the first to respond. The action
set of the proposing agent is to make an offer to the responding agent from the
set A = [0, 1]. The action set of the responding agent is to specify whether they
would accept or reject each possible offer. The payoff to the agents is given as
a tuple (uy,u,) where uys is the payoff to the firm and w,, is the payoff to the
worker.

We consider two versions of the bargaining game: The Ultimatum game in
the normal form and the 2-round alternating bargaining game in the extensive
form. In this section, we introduce both games with continuous action sets, and
in Section 4 we describe the convex version of each game used for learning.

3.1 Normal Form Ultimatum Game

In the Ultimatum game 2, the firm makes an offer a € A and the worker can
either accept a or reject a. If the worker accepts, the payoff to the agents is
(1 — a,a), and if the worker rejects, the payoff to the agents is (0,0). In the
normal form version of the game, the agents specify their actions simultaneously.
In this version, we assume the firm still chooses an offer ay € A, but we now
assume the worker chooses an acceptance threshold a,, € A which specifies the
lower bound on offers they are willing to accept. We will refer to the strategy
profile of the agents as a tuple specifying each agent’s action: (ay,a,,). Finally,
the utility functions of the agents are

up(ag, aw) = (1 —af) - Haw < ay},
Uw(af, aw) = af - H{ay < ar}.

There are infinitely many Nash equilibria for this game. For each a € A, the
strategy profile (a,a) is in Nash Equilibrium. Given the worker’s acceptance
threshold, the firm gets the most utility by making the lowest possible offer
that will get accepted, and, given the firm’s offer, the worker gets equal utility
from any acceptance threshold at or below this offer. As a result, the Nash

2See Tadelis (2013) for an overview of variations of the Ultimatum game.



equilibria are not strict, i.e., for an offer ay > 0,
U (Qf, Q) = af,Va, < ay,a, € A.

There are also mixed Nash equilibria in this game which follows the structure
of the firm making a pure offer ay € A and the worker mixing over acceptance
thresholds a,, € A where the largest acceptance threshold the worker plays
with non-zero probability is ay. Notably, in order to be in Nash equilibrium,
the worker must be playing the acceptance threshold ay with sufficiently high
probability to prevent the firm from preferring a lower offer. We will define this
mixed Nash equilibrium in detail when we introduce the convex version of this
game in Section 4.

Finally, it is of note that in the sequential version of the game there is a
unique subgame perfect equilibrium where the worker would accept any offer
greater than 0, so the firm proposes the lowest possible non-zero offer. How-
ever, we are interested in the conditions that lead to convergence to different
equilibria, especially given the divergence from the subgame perfect outcome
in real-world experiments of the Ultimatum game (Debove et al., 2016), so our
results focus on the normal form version of the game.

3.2 2-Round Alternating Bargaining Game in the Exten-
sive Form

For our experimental results, we also consider a 2-round alternating bargaining
game in the extensive form with complete information and perfect recall. Ac-
tions are now performed sequentially instead of simultaneously and the agents
take turns making offers and responding to offers. Here, the firm makes the first
offer ay € A. Then, the worker either accepts or rejects the offer. If the offer
is accepted, the agents receive the payoff (1 — ay,ay). Otherwise, the agents
switch roles and the worker now makes a counter-offer a,, € A to which the
firm can either accept or reject. A time discount factor 0 < § < 1 is applied to
payoffs in the second round. So, if the firm accepts the counter offer the agents
receive the payoff d(ay,1 — ay), and if the firm rejects the counter offer the
agents receive §(0,0). The extensive form game tree is provided in Figure 1.
Note for space we condense the nodes of the worker responding to the offer af
and counter offering some a,, if they reject.

4 Learning Bargaining Strategies Online

In this paper, we are interested in how agents learn to play strategies in the
kinds of bargaining games described in the previous section. Online learning is
a useful framework for this problem because, here, agents update their strategies
based on the utility feedback they see from their previous actions and the actions
of their opponent. Further, there exist no-regret algorithms where the strategy
an agent learn online gets as much utility, on average, as the best-in-hindsight
strategy. Formally, let agt) € A be the action agent i took at time ¢ and let
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Figure 1: The extensive form game tree for the 2-round alternating bargaining
game.

ugt) (a) be the utility agent i receives at time step ¢ when playing action a. Then,

the regret of an algorithm after T" time steps is

T
® ® ¢, @
t, = m E . _E . Y,
Regret, = arg a axt 1 u; (a) 2 u; (a; )

An algorithm is said to be no-regret if Regret is sublinear in 7" for any arbitrary
(1

sequence of utility feedback functions u;
feedback functions.

Online learning algorithms are particularly well-suited for convex optimiza-
tion problems 3. However, the utility functions in each of our games are non-
convex, so we discretize our action set to use the convex expected utility function
instead. Notably, previous work has shown that no-regret strategies for the dis-
cretized normal form Ultimatum game get no-regret with respect to the best

action in hindsight from the original continuous space (Kamp and Fish, 2024).

. ,ul(.T) drawn from a class of utility

4.1 Convex Game Representation
4.1.1 Normal Form Ultimatum Game with Mixed Strategies

We now consider the action space [0, 1] discretized by an integer D > 1, i.e.,
A={0,%,..., 251, 1}. Let GV be the normal form Ultimatum game with such
a discreteized action set. The agents then learn mixed strategies over A(A). Let

a:z(-t) € A(A) be the mixed strategy of agent ¢ at time ¢ for ¢ € {f,w} and let

xz(ti be the probability mass agent i puts on action a at time ¢t. Further, for all

t

a € A, let 1, be a pure strategy of action a. Next, let Ui(ﬂ be the cumulative

3See Hazan et al. (2016) for an overview of online convex optimization.



payoff to agent ¢ through time ¢ when they play a pure action a, given the mixed
strategy history of agent —i, the other agent, i.e.,

t
Uz‘(,l;)({f(—‘rz‘) 1) = Zui(a,x(_:-)).
T=1

where

up(a, ) = E [(1-a)l{a, <ajl,

Apr~Tqy

Uy (Tf,0) = ap]wa[apl{ap > a}].

Unless otherwise specified, we will omit the input history {x(T) t

>/ }e_, from the
notation and refer to the cumulative payoff for a specific action through time
t as UZ-(,Z). Finally, we will take Ui(t) to be the cumulative payoff vector of all
actions a € A.

The pure Nash equilibria in this representation are still of the form (1,,1,)
for all @ € A. Additionally, (1p,11) is a pure Nash equilibrium where both
agents get 0. Finally, there is only one kind of mixed Nash equilibrium possible
in this game. For zy, z,, € A(A), the strategy profile (¢, x,,) is in mixed Nash
equilibrium if 2y = 1,, for ay € A, max{ay|?y,q, >0} = ay, and

(I-af)>2(1-a)- Z Tw,a,, V0 < af. (1)
aw<a
Here, since max{ay|Tw,a, > 0} = ay, then the worker accepts an offer of

ay with probability 1, so the expected utility to the firm for an offer of af
is (1 —ag). Any higher offer would also be accepted with probability 1, so
the firm would get strictly worse utility from making an offer higher than ay.
Further, the condition 1 ensures the firm does not get more expected utility by
lowering their offer. When, zy = 1,, the expected utility of the worker is ay for
any distribution over acceptance thresholds a < ay is ay and all other mixed
strategies get strictly less than ay. Therefore, the agents are in mixed Nash
equilibrium by definition. In Section 5, we prove last-iterate convergence to an
approximate mixed Nash Equilibrium of this kind.

4.1.2 2-Round Alternating Bargaining Game in Sequence Form Rep-
resentation

First, we use the same offer space as above, A = {0, %7 R %, 1}. Let G
be the 2-round alternating bargaining game with this action set. Let I; for
i € {f,w} be the information set for each agent. Since our game is complete
information, note that there is exactly one node for each I € I;. Let h; , » be the
node where agent 4 is making a proposal after their opponent’s previous action
o and h;,, be the node where agent i is responding after their opponent’s

previous action o. Then, an agent’s behavioral strategy is

B+ I x AU {Accept, Reject} — [0, 1].



Then, the convex version of an extensive form game can be derived from its
sequence form representation . Let r; be the realization plan of agent ¢ mapping
action sequences of player ¢ to probability masses. Let Q; be the set of valid
realization plans of agent i. We abuse notation slightly and suppose r € Q;
is represented as a vector of probability masses on sequences leading to payoff
nodes. Then, the expected utility of a realization plan, given a cumulative
expected utility vector Ui(t), can be denoted as (Ui(t)7 r). Finally, note that every
realization plan has a one-to-one correspondence with a behavioral strategy.

4.2 Follow-the-Regularized-Leader

The online algorithm we consider is Follow-the-Regularized-Leader (FTRL) (Shalev-
Shwartz et al., 2012). We use the standard Euclidean regularizer throughout
and let 7 > 0 be the learning rate. First, the update step of FTRL for game
G for each agent i € {f,w} at time ¢:

1
(t) ; 2 1
argmema(x)nwz ,2) = 5l = aill2 (1)

Next, For game G®), the update step of FTRL for game G(!) for each agent
i€ {f,w} at time ¢:

1
U ry = Z|lr — a2 2
arg}}éegfn( i) QHT aill3 (2)

The term «; is the reference point of the regularizer. We will assume a ref-
erence point of a; = 0 throughout Section 5, but in Section 4 we experiment
with a variety of reference points to demonstrate their influence on which Nash
equilibrium the agents converge to.

5 Last-Iterate Convergence to ¢e-Nash Equilib-
rium

We are now ready to state the main result of our work. In Theorem 11, we show
that, regardless of the initial conditions, agents learning bargaining strategies for
G¢M via Algorithm 1 will converge to an approximate mixed Nash equilibrium
in finite time.

Theorem 11. Suppose agents learn strategies for GV using Algorithm 1 with
a; =0, any n > 0,D > 2, and arbitrary initial conditions xq(l,l),xgcl) e A(A).

4See the Appendix for details of the sequence form of the 2 Round Alternating Bargain-
ing game and see Shoham and Leyton-Brown (2008) for more details on the sequence form
representation of extensive form games in general.



Then, for any € > 0, there exists a finite time t. where (ng),xg)) s in e-Nash

Equilibrium for all T > t..

This strong convergence result demonstrates the promise of online learning
algorithms in the area of learning bargaining strategies. Additionally, this result
extends the equilibrium convergence guarantees of FTRL to a game that is
degenerate, not variationally stable, and not zero-sum.

In the proof, there is one important point in each agent’s strategy to track at
each time t: The largest acceptance threshold that the worker plays with non-
zero probability and the smallest offer the firm makes with non-zero probability,
notated as follows.

Wik =

= max{a|xg?a > 0},

£ = minfalz, > 0}.

min

At a high-level, in Algorithm 1, the firm strictly prefers a lower offer if it will
be accepted by xg) with probability 1, i.e., the firm prefers to offer wﬁﬁ&x than
any greater offer. Further, given condition 1 of mixed NE of GV, the firm

will also prefer to lower their offer if P « is not sufficiently large. At the

W, Wmax
same time, any acceptance threshold the worker uses less than or equal to flgfl)n
gets equal expected utility and strictly more expected utility than any greater
acceptance threshold. As a result, the cumulative utility of smaller acceptance
thresholds grows comparatively more than larger acceptance thresholds, so there

is an incentive for the worker to lower their acceptance threshold over time to
match f

min a0d remain fixed if their acceptance threshold is less than f This

min*

structure of the worker’s utility function is also sufficient to cause wr(n;x to be
non-increasing over time. So, f(t) < wr(nlx causes x() « to decrease while
w

wr(ééx < foin () causes f, . () to decrease while wﬁnzlx remains fixed.

yWmax

The proof of Theorem 11 uses this relation between wihy and fnfl)n to show
()

that it takes finite time for wﬁn;x and f( to decrease until "/ ., is large

enough to pass condition 1. We show there always exists a time where z*) )

W, Wmax

is large enough to pass condition 1 for all future time steps, and finally, that

this suffices for the firm to approach the pure strategy 1 wl®) in the limit.
Additionally, the last-iterate strategy profile of Algorlthm 1 is also an e-Nash

equilibrium with respect to the normal form Ultimatum game with the action

set A =[0,1].

Corollary 0.1. Suppose the last iterate strategy profile of Algorithm 1, ( @ :ESUT)),

is an e-Nash Equilibrium for some € > 0 with respect to mized strategies over the
action set {0,...,1}. Then, ( Ty 7 x&”) 1s an e-Nash Equilibrium with respect
to pure strategies from the action set [0, 1].

Proof. Let e > 0. Suppose after running Algorithm 1 for T time steps, (a:(fT), xq(p)

is in e-Nash Equilibrium. Then, by Theorem 11, there exists k € {1,..., D} such



and x(T)(T) > 1—e. We will now show

(T) 1
Z D—k+1 1,

that wr(,?;)x = % where 2° 7 1,

w7wrnax

Wmax

that (xgcT), xSUT)) is an e-best response for the firm and worker, respectively, in

the continuous game. That is, there is no action in the continuous set of actions

that gets at least € more utility than a:(fT) and x&T), respectively.

First, for the worker, by definition of their utility function, the most utility
they can get at time T is from an acceptance threshold at f D hut ac(T)(T) >

min’ =
7wnxax

1 — € implies
(2§, 2) >y (57,1 00) — ¢,

w

min

T) . . .
Therefore, x&, ) is an e-best response for the worker in the continuous game as

well.
Next, for the firm, for all £ € {1,...,k}, consider an offer a € [0, 1] from the

continuous game where wax — % <a< w,(g;)x — %. Then,
-1
T
up(a, ey = (1= a" . )-(1-a)
_ Winax — 15
=0
-1 ,
T
<=3 a ) (= (wk- 5)
=0
L
sl - )
So, if wﬁﬂ& is a best response offer with respect to the offer set {%, R

then, it must also be a best response with respect to the offer set [0, 1]. There-
fore, if x;T)

sWmax

continuous game as well. O

> 1 — ¢, then x(fT) is an e-best response for the firm in the

This result shows that FTRL is a powerful learning algorithm in terms of
being both no-regret and converging last-iterate to approximate Nash equilibria
in bargaining games. We now turn to our experimental results to expand on
the implications of our theoretical result.

6 Experimental Results

We implemented Algorithm 1 to simulate the agents learning strategies for G(1)
and Algorithm 2 for G using CVXPY (Diamond and Boyd, 2016). The goal
of our experiments is to 1) validate our theoretical findings and 2) demonstrate
the link between initial conditions and the Nash equilibrium outcome.

Not only do the experiments demonstrate convergence to Nash equilibria
in a variety of settings, but they also show that the algorithm converges to
different Nash equilibria, depending on the initial conditions. This highlights
the importance of our results: FTRL has the ability to learn no-regret and
Nash equilibrium strategies, so it could also offer some explanation for how

10



agents end up in one Nash equilibria over another. For example, we will show
how credible and incredible threats may arise while learning strategies for G(?)
via Algorithm 2.

6.1 Normal Form Ultimatum Game Experiments

In these experiments, we run Algorithm 1 over a range of initial conditions
and provide graph outputs displaying the payoff to the worker after the agents
converge to a Nash equilibrium. For a given D value, we sweep over all possible
initial pure strategy profiles (14,f,14,,) for af,a, € A and we use a variety of
«; settings. The results show a range of output patterns which indicates the
kind of Nash equilibrium the agents converge to depends largely on the initial
conditions. The results for these experiments are in Figure 2.

11



Worker Payoff Value at NE for Initial Strategies (1=0.2312, D=30, T=350, alpha_f: 1.00, alpha_w: 1.00)
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(a) Algorithm 1 parameterized by D = (b) Algorithm 1 parameterized by D =
25, T = 300, n = 0.2312, oy = 141, 25, T' = 300, n = 0.2403, oy = 1¢.24,
oy = 17. ayw = Lo.as.
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(¢) Algorithm 1 parameterized by D = (d) Algorithm 1 parameterized by D =
25, T = 300, n = 0.2403, ay = 1o.32, 30, T = 300, n = 0.2403, ay = 0, .y =
Ay = 10,32. 0.

Figure 2: Nash equilibrium payoff outcomes for the worker when agents are
learning strategies for G(Y) using Algorithm 1.

In all of our results, once we observe convergence in the strategy profiles, the
firm is playing an approximately pure strategy 1, for some a € A and the worker
satisfies w,@x = a with either a mixture over smaller acceptance thresholds if
a # oy, or they are playing the acceptance threshold a approximately purely.
The graphs show the value of a across all combinations of initial pure strategy
profiles for different values of D and reference points.

In Graphs 2a and 2d, the reference points are either both set at 1 or both
set at 0. Here, the Nash equilibrium outcomes depend more on the initial
strategies, and the worker’s payoff ranges from 0.1 to 0.3. Recall the payoff
value represents the percentage split of a surplus between the firm and worker,
so each 0.01 difference represents a 1% change to the worker’s wage.
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In Graph 2b, the worker has a larger reference point than the firm, and the
payoff is one of the two values. The worker’s reference point is more likely when
the worker has a larger initial acceptance threshold while the firm’s reference
point becomes more likely when the worker has a smaller initial acceptance
threshold.

Finally, in Graph 2c, the agents both have a references point at 0.32 and
they converge to this Nash equilibrium regardless of their initial strategies. Intu-
itively, (19.32, 10.32) is a Nash equilibrium in G| so when agents agree on this
outcome via their reference point, then both agents maximize their objective
value simultaneously when the strategy 1g.32 has the most mass. Interestingly,
the strategy profile (11,17) is also a Nash equilibrium, but as demonstrated
by Graph 2a, this does not imply convergence to this Nash equilibrium when
afp =, = 1;.

6.2 2-Round Alternating Bargaining Game Experiments

In these experiments, we run Algorithm 2 over a range of initial conditions
and provide graph outputs displaying the payoff to the worker after the agents
converge to a Nash equilibrium. For a given D value, we sweep over a large
subset of all possible initial pure strategy profiles. In particular, we consider
behavioral strategy profiles characterized by the offer the agent makes as a
proposer and the acceptance threshold it sets as a responder. That is, each
agent i chooses a; p,a; » € A and sets 3; as follows:

1 h= hi,r,oa a > Qi ry
ﬁz(h7 a) = 1 h= hi,p,av a = Qj,p,
0 otherwise

For these experiments, we use ay = o, = 0. Further, we use D =4 and D =5
due to longer times until convergence. The results of our experiments are in
Figure 3.
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(a) Algorithm 2 parameterized by D = (b) Algorithm 2 parameterized by D =
4, T =1000, n =0.5, ay =0, . =05, T = 1500, n = 0.5, ay =0, ac = 0
and G is parameterized by 6 =0.9. and G® is parameterized by § = 0.9.
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(c¢) Algorithm 2 parameterized by D =
4, T =1000,n=04, ay =0, a. =0
and G@ is parameterized by § = 0.2.

Figure 3: Nash equilibrium payoff outcomes for the worker when agents are
learning strategies for G(?) using Algorithm 2.

A realization plan has a one-to-one correspondence with a behavioral strat-

egy, so we describe the outcomes based on the corresponding Bi(T) of ’I‘Z(T) for
each agent i. Once we observe convergence of (5}T), I(UT)), we observe two kinds
of Nash equilibria. in The first is an approximate pure Nash equilibrium where
the firm proposes ay € A approximately purely and the worker accepts the offer
approximately purely. The second is an approximate mixed Nash equilibrium
is where firm mixes over a set of first offers where the worker rejects the first
offer and counter offers a,, € A which the firm approximately purely accepts.
First, in all cases, B}T)(hﬁr,o,Accept) = %,
counter offer of 0 with probability % This is because the firm gets 0 utility
from either accepting or rejecting an offer of 0, so the Lagrangian of the update

i.e., the firm always accepts a
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step of Algorithm 2 requires Bj(f) (hfr0,Accept) = B)(f)(hﬁr,o, Reject) for all time
steps t. Therefore, for D > 2, the most utility that the worker can get in round
21is 0 - % from a counter offer of a, = %. The most common outcome
in all the graphs (the most frequent color in all the graphs) is when the firm
approximately purely makes the smallest offer ay € A such that 0 - % < ay
to which the worker approximately purely accepts. Further, in response to all
first offers a < ay, the worker has indeed converged to approximately purely
rejecting and counter offering a,, = %. Since this is off the equilibrium path,
this represents a credible threat.

This case follows the logic of backwards induction, and the only reason we do
not observe convergence to approximately pure subgame perfect equilibrium is
because, by the Lagrangian of the update step of Algorithm 2, the worker only
updates the probability mass values of responses to first offers that are played
with non-zero probability by T;t) and otherwise they remain fixed. The same
is true of the firm’s update step: The firm does not update the value of their
counter offer response probabilities when i) has 0 probability mass on making
such a counter offer. As a result, this allows for the possibility of incredible
threats in the last-iterate strategy. We highlight two cases where incredible
threats cause the agents to end in a strategy profile that is 1) worse for both
agents and 2) worse for the worker, but better for the firm.

In Graph 3a, case 1) occurs at outcomes where the worker is getting a payoff
of 0.675 (the second most frequent color), the agents have converged to a strat-
egy profile where the firm is mixing over the first offers ay € {0,0.25,0.5} only
and the worker is responding by rejecting and approximately purely proposing
the counter offer 0.25. Note that due to the discount factor 4, this is strictly
worse for both agents than the outcome where the worker accepts 0.75 in the
first round. The reason this case occurs is because the initial conditions must
have been set such that the firm puts 0 probability mass on the offer 0.75 such
that the worker gets stuck at a strategy where they are not accepting 0.75 with
high probability. Thus, the incredible threat of rejecting 0.75 leads to an out-
come that is worse for both agents. The same case qualitatively happens in
Graph 3b at the outcomes where the worker gets 0.72 (the least frequent color).

Finally, case 2) occurs in Graph 3a at outcomes where the worker is getting
a payoff of 0.5 (the least frequent color). Here, the initial conditions equate to
the firm making an incredible threat early on that they would accept a counter
offer of 0.25 with low probability if the firm rejects an offer of 0.5, so the worker
converges to accept the lower offer of 0.5 approximately purely.

7 Conclusion and Future Work

In Section 5, Theorem 11 establishes that FTRL has stronger equilibrium con-
vergence guarantees than previously established since G() is degenerate, not a
zero-sum game, not strictly variationally stable, and yet FTRL is still guaran-
teed to have last-iterate convergence to an approximate mixed Nash Equilibria
for any initial conditions. Additionally, our results demonstrate the applica-
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bility of no-regret algorithms to bargaining games in general. This opens a
direction for future work in using these algorithms to learn strategies in more
complicated bargaining games including n-round and infinite round bargaining
as well as bargaining with outside options.

Further, the property of an algorithm being no-regret provides strong jus-
tification for why any individual agent would use such a procedure to learn a
strategy, so this line of work could contribute to a more realistic understanding
of how bargaining strategies are chosen, especially given the inconsistency of
theoretical results and empirical observations of the Ultimatum game. For ex-
ample, one interpretation of Graph 2c with equal reference points in each agent’s
regularizer could be the agreement of a relevant social norm that agents coordi-
nate on implicitly (Roth et al., 1995). Additionally, the patterns of Graphs 2a
and 2d suggest, for some reference point settings, there is a consistent relation-
ship between the initial strategies and the Nash equilibrium that is converged
to. Explicating this correlation could have implications for interpreting how
opening offers influence the trajectory of a bargaining game and we leave this
for future work.

Finally, this line of work also has implications for algorithmic fairness con-
cerns. Given the variety of possible Nash equilibrium outcomes demonstrated
by our empirical results, especially with asymmetric payoff outcomes, it is all
the more important to study algorithms that could implicitly lead to optimal,
yet discriminatory outcomes. Our work makes progress in this area by describ-
ing the dynamics of wyax and fiin that drive agents to convergence in the proof
of Theorem 11. We hope to inspire future work on how algorithm design and
game structures influence the kind of equilibrium an algorithm converges to.
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A G Under FTRL-NFG Always Converges to
e-Mixed NE

A.1 Set-up and the Lagrangian
The Lagrangian of this quadratic program for Algorithm 1 is

1
Li(xi, Niy i) = 5”%“5 — (U} i) + A (Z Tiq — 1) - Z Hi,aTia

acA acA

The dual of this Lagrangian is

max min L;(x, \;,
/\“ljme]R\ ( ! MZ)
subject to

wi >0
The quadratic program has strong duality by Slater’s condition since the ob-
jective function is convex, the inequality constraint is convex, the equality con-
straint is affine, and there exists a point € A(A) where the equality constraint
is satisfied and the inequality is strictly satisfied.

Then, by the KKT theorem, any problem that satisfies strong duality also sat-
isfies the following KKT conditions:

e Stationarity: 0 € VL(z, A\, tt;)|z=o+ for the primal optimal z*.

e Primal Feasibility: The primal constraints are satisfied for the primal
optimal x*.

e Dual Feasibility: u, > 0,Va € A for the dual optimal variables.
e Complementary Slackness: p,z) = 0.

Notably, by stationarity, for each i € {f,w} and for each a € A,

2T — Ui(ﬁl) = Ai + Hia-

’La

Claim 1. Ifz; , 1) 5 0 and 20D > 0, then

i,a’

1 1
2D — gD — ® ) (1)

Proof. If z H_l) > 0, Ett;tl) > 0, then by complementary slackness, we have
,Ufz,a ,U/z,a/ - 0
By stationarity, this implies that

(t+1) 77U(t) - >\’i7

z a i,a

and
x(tﬂ) nUZ-(,Z), — N

’La

The claim immediately follows. O
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Claim 2. Consider agent i and two possible strategies of i: a,a’ € A. If at

least one of x; , (t+1) a:(t—H has non-zero probability mass, then m(tH) > xz(:tl) if
(t+1) _ m(t+1)

i,a’

i,a’

and only if U; , t) > U(t), with equality if and only if x; ,

Proof. To begin, the KKT conditions imply

2 Ul £ x>0
and
x(t+1)(x(t+1) - 77Ui(2 + ) =0.

i

This implies

MO { Ul =N A <UL
20 i > U

(t+1)> (t+1) If = t+1) (t+1)

hat | = 0, then from above

First, suppose z; > 0 and z;

<\ < nU(t) and 1mmedlately we have Uz(t), < U(t). If both
(t+1)

we have 77U *)

i,a’
(t+1)

>0 and z; > 0, then from Claim 1, we have

i,a i,a

LD ) (U(t) Ui(,z)’) >0,

so we have U(t) < U( ) with equality if and only if :v(tﬂ) = gcz(tjl)
Next, suppose U(t) < U(t) If both x(H_l) > 0 and x(t+1) > 0, then, :v(tH) >

(t+1)
xi7a/

Next, if z; > 0 and x;
Further, it cannot be the case that U (t)

1a’*

Ai < nUZ-(’a). Finally, if a:(Hl) =0 and x(tﬂ) > 0, then we must have nU(t) <

7,Q

U; (£) . immediately follows from Claim 1.
(+ ) S D)

za

with equality if and only if UZ(Q/ =
t+1) (Hl) = 0, then we immediately have x;

U; (t) because this case 1mphes 77Ul(

A < nU; .(t), which contradicts our original assumption Ui(’ a), < Ul-(g and we can

(t+1) .

conclude that such a probability assignment in x; is not possible.

O
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A.2 Convergence to e-Mixed NE

First we state the main theorem to prove in this section. We will then prove
several lemmas that will be necessary to prove this theorem. We will close by
proving the main theorem. Throughout this section, we assume a firm and
worker agent are learning strategies for GV using Algorithm 1 parameterized
by any n > 0,D > 2.

Theorem 11. Suppose agents learn strategies for GV using Algorithm 1 with

a; =0, any n > 0,D > 2, and arbitrary initial conditions xq(i,),z;l e A(A).

Then, for any € > 0, there exists a finite time t. where (x; ),xw ) is in e-Nash

Equilibrium for all T > t..

Lemma 1. The sequences w,(uf?o,...,x,(uf?l is nmon-increasing at all time steps

t > 1 for any arbitrary sequence of firm mized strategies x;l), .. xg‘t D Fur-

v 4

ther, wy, (ng), 0),...,uw(xy’, 1) is non-increasing at all time steps t > 1 for any

arbitrary firm mized strategy a:( ),

Proof. For any arbitrary sequence of firm mixed strategies xgcl), e 7x§f_1), the
cumulative utility the worker gets through time ¢ — 1 of an acceptance threshold

a€Ais
ZELED 9D DTN
T=lap,>a

This implies the following cumulative utility relation between subsequent strate-
gies ap < Gp41:

t—1 t—1)
Ué} ak) U1S} ak+1 + Z xf,ak ’

Since xs is a probability distribution and each ay is non-negative, we can con-
clude

Ulfag) > - 2 ULy
By Claim 2, acg)ak > xEﬁ)aM if and only if Ul(utakl) > tha,}ll with equality if and
only if zg?ak = ziﬁ)am Therefore, the sequence xEU?O, . ( )1 is non-increasing.
The result above holds for the expected utility to the worker at any time step ¢
as well:

’U,w(ajgf)7 ak) = uw(ng), ak+1) + .’Egct’zlk - A,

so we may conclude

Uy (ng),ao) >...> uw(mgf),ap).
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Lemma 2. The sequence J:%)O, . ,a?gf)l is unimodal at all time steps t > 1 for

any arbitrary sequence of worker mized strategies xS ), e ,asv(ff_l) that satisfy
Lemma 1. Further, us(0, ng))7 coup(l xg)) is unimodal at all time stepst > 1

for any worker mized strategy zg) that satisfies Lemma 1.
Proof. For any arbitrary sequence of worker mixed strategies x£3 ), . ,xg_l),
the cumulative utility the firm gets through time ¢ — 1 for an offer of a € A is

t—1
t—1 r
UV =22 30 alih, (=),
7=1a,<a
We begin by showing the sequence U ](c’t(;l) LU J(ct; D is unimodal when the

sequence zS), e ,xS,f‘l) satisfies Lemma 1.

Consider subsequent strategies ay, = %, g4l = Hfl, then we have

P

(-1 D _ N D—(-1 1

-1 t—1 , - i

Uf7az+1 - Uf,az = Z Iq(y,)(zg+1 <D> - Z 1’1(”7)(15 . (1)
T=1 a<ag

From expression 1, note that

t—1 (1)
(t—1) (t—1) D1 Tw,apy 1
Uf,ae < Uf7a£+1 = thl () = D—/¢—1" (2)
=1 a<lay YW@

Suppose ax = % is a cumulative utility maximizer, i.e.,

U —Uf Y >0,Ya # a € A (3)
So, to establish that U }f;ll) e }ta_Dlzl is unimodal, it suffices to show
b gl < Vee{l,...  k}
frae—1 fae 7= R
vt —ul) >, vee {k,...,D—1}

By Lemma 1, zg ) is non-increasing as the acceptance thresholds a — 1 at every

time step 7. Further, each xg )a > 0 at every time step 7, so whenever 7 > j,

Therefore, V¢ € {1,...,k},

—1 T —1 T
S 25k, S St 2 o1
Zt—l (T) - Zt—l (T) - D _ k’

=1 a<ag_1 Lw,a T=1 a<ap_1 Tw,a




and V¢ e {k,...,D —1},

t—1 (1) t—1 (1)
27:1 Lw,agiq Z‘r:l Lw,ak41 1
t—1 (r) — -1 (M = D—k-1’
D1 2aa<ay Twia 2irm1 Da<ay, Twia

where the last inequality in each expression follows from combining expressions 2
and 3. Therefore,

Sy i, 1
= = > Ve e{l,...,k},
t—1 T) — _
Z‘r:l a<ag_q ‘/Egﬂv)a D ¢
Sy s 1
T—’ < vee{k,...,D—1}.
t—1 T) — /A
27:1 a<ay xq{”v)a D-4 1

Finally, Claim 2 implies that if the sequence U J(cta 1), LU J(ct; D g unimodal,

then the sequence a:g%, e ,argf)l is unimodal as well.

Further, the above logic holds for any time step ¢t where mg) satisfies Lemma 1,
so we can conclude (0, xq(lf)), coup(l, xq(lf)) is unimodal as well.

O

Recall the following notation which will be used throughout the subsequent
lemmas.

wr(rtl)ax = max{a|xg?a > 0},

£ = minfalz, > 0}.

min

Lemma 3. If agents play strategies at time t such that wl(rtl;X < fr(xfi)n, then
(t+1) (t)
Tw = Tw -

Proof. Notice that, for any acceptance threshold a’ < f (t)

min’
uw(ng), a) = Z xsct)a -a
a>f{)

min

)

in?

because ngl =0foralla < fr(rfl)n by definition. This implies, for any a,a’ < fI(If

t —1 t—1

Ul(;,)a - U’LE},)U,/ = Uqg)t,a ) — Uz(u,a’ ) (1)
First, we show that any acceptance threshold that gets some mass at time
t and time t + 1 must have the same probability mass difference with other

such acceptance thresholds. Since witl < fr(lfi)n, then for any a,a’ € A where

24l > 0,20, >0, by Claim 1 and equation 1,
‘ _ t—1 ¢
e = vl = n(USLY = UL = (U, = UL,
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This implies that, if ngll) > 0, mﬁj;}) > 0, then
xi(j:;l) - xfi;’l) = xg,)a - ]"Ej?a/ (2)

Next, suppose for some a,a’ < wr(ﬁ;x, we have x(uf)a > 0, 29> 0, but xgj;l) >

w,a’
0 (t+1)

Y w,a’

= 0. By Claim 2, the only way for this case to occur is for at least one

acceptance threshold a’ < wr(rtllx to get 0 mass at time ¢t 4+ 1 and no acceptance

threshold greater than wr(rtllx, which gets 0 mass at time ¢ by definition, to have
non-zero mass at time ¢t + 1. Therefore, this is the only case to consider for an
acceptance threshold getting 0 mass at time ¢+ 1 after having non-zero mass at
time ¢t. Here, the number of acceptance thresholds that get mass must be strictly
less than those that do at time ¢, so by the primal constraints and equation 2

we must have
(t+1

t
Tya ) > mgu)a

Then, by the KKT conditions,

N = (U0 + (s 0) = o0 2 (UL + (e ).

w,a w,a’ fo

(t) t)

. t (
Since Wmax < fiins

then wu,, (xgct), a) = Uy (x(ft)v a’), so

(UG —Ugo) = 2l
By Claim 1, this implies

xg,)a - m(t) > x(t+1)’

w,a’ = Yw,a

()

however, since x,,
;

o > 0, this implies the contradiction

z®) >zt

w,a w,a

(t) (t) (®

Therefore, it is impossible for some a,a’ < wmax to satisfy xq’q > 0, Tyl >0,
but mg,ﬁl) > 0, xgz,l) =0.

Finally, suppose for some a < wl(ﬁzlx < a/, we have xg)a > O,xg?a, = 0, but
zﬁﬁﬂ;” > O,x(tH) > 0. Note by Claim 2, it is impossible for zg)a = O,x(t) >0

w,a’ w,a’

since the cumulative utility functions are non-increasing as a increases, so this
is the only case to consider for an acceptance threshold gaining mass at time
t + 1 after having 0 mass at time ¢. Further, by the primal constraints and
equation 2, this implies
t+1 t
S < 1),
First, by the KKT conditions,

WL <M =i o)

/
w,a ,ar
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but if 2+

w,a’

>0
)\Sqt+l) < nU(t)

w,a’"

Since :m(jj;l) < xg?a,

MY = (UEY + (o)) = 20D 2 A0 + g (o, a).
However, since uw(ng), a) > uw(x}t), a') by Lemma 1,

AD + u (@ a) > UL + w2, a)),
which implies the contradiction
AGD > pp®

Therefore, the same acceptance thresholds get non-zero probability mass at time

t and t + 1 and their probability mass differences must remain the same, thus,

2 = 2. 0

(&) -

in
»Wmax yWmax

Lemma 4. Suppose at time t that fg) < wgéx. Then, x(tH()t) <z®
w

(t+1) (®)

Proof. To begin, if "4, = 0, then immediately by definition of wmax,
wvwmax
(t+1) (t)
Pwuihe S Pl
Next suppose x(tH()t) > 0. First, by Lemma 1 and the definition of wr(rgx, for
7wtnax

all a < wg;x,

and Claim 2 implies
— (t—1)
Ug,al) >U )

W, Wmax

Next, since f(t) < wx(ﬁz)ix it must be the case that, for all a < wggx,

uw(ng), @) — Uy (Jjgf), w) ) >0.
Therefore,
(t) - (t-1)
Uit = Vi, > Ui = Uytn, @
Since x(tﬂ()t) > 0, then by Lemma 1, xq(jfll) > 0 for all a < wr(ﬁéx. Then,
W, Winax

Claim 1 and inequality 1 implies for all a < wr(rfzm,

t+1) (t+1) (t) (t)
—x >x,) —x .
@ w,wihe wHa w,wi



I x(t+1()) > 2® «, » then this implies for all a < wgzlx,

W, Wmax yWmax
t+1 t
S > al), 2

However, by the primal constraint

Z .’L‘g?a =1,

(t)

a<Wmax
so the assumption a:fjti%lx > ch?wglx along with inequality 2 implies that
Z ﬂc(t'H) > 1,
a<wma)1x

which violates the primal constraint at time t 4+ 1. Therefore,

(t+1) )
) RGN
max 9 max

Lemma 5. At any time step t, wr(n )X < wﬁﬁ&x forall T > t.

Proof. First, if fénn r(n;x, then by Lemma 3,
J;gH) :xgj) = x(tﬂ(),) =z ® -
W, Wi W, Winax

Otherwise if fmm < wifhy, then we will show it’s impossible to have a > wiihs

with xq(ﬂ)a =0 but a:(tﬂ) > 0. First, by Lemma 4,

(t+1) (t)
T ST
9 max 9 max

If (t+1()t) =0, then x(tH) = 0 necessarily by Lemma 1.
wiwl"ﬂax
Otherwise suppose 2\t ()t) > (0. Note that the KKT conditions at time ¢ imply
w

s Wmax

U(t (t) nUz(ut,;l) > x(t)

t)
’ ma wﬁwlnax

Then, if m,(uffll) > (0 and m(tﬂ(),ﬂ) > 0, by Claim 1, it must be true that

7wn1ax

t+1 ¢
xEU wﬁzflx gtl) 77U( ) o~ nU&t))m
which implies
) (* (t
xwﬂ’r(éa)xx - nUw7wmax nUw,a'
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However, since x(tﬂ()t) <z ) > then this implies

yWmax sWmax

vl —qui) > Ut - U,
W, Winax ’ w,wih ’
or
Uy (xgct), a) > uw(ng),wglx)
which is impossible by Lemma 1. Therefore, w&fgx < wE}ile for all = > t¢. O

Lemma 6. Suppose at time t that w,(nax < f(t

min- Lhen, there is always a time
t' >t where f(t) < w,(ﬁa)

Proof. Suppose instead it is the case that for all 7 > t wga)bx < f(T) First,

min*
notice by Lemma 3 that for all 7 > ¢ where wilde < f in?

1'5:;—+1) = CUSJ),
(7) (t)

thus, Wmax = Wmax for all 7 > ¢.
Next, by definition of the firm’s utility function,

wp (Wi, o) > up(a, 2 + o’ Va>w(7)

max ’ w max

Therefore, since wga)tx is fixed for all 7 > t, there exists a time ¢’ > ¢ where

U;t Doy 2 U Ya > wll),

7wmax
So, if there exists a > wf,tlla)x where ngl) > 0, then by Claim 2, it must be the

(")

case that xf > x(t ) > 0 which implies

(")

ywmmx

) <
lell‘l — wmax

Otherwise, if no such a > wg;)x where xgct a) > 0 exists, then by definition of f )

min
and the primal constraints we again have

£ < W)

Therefore, by contradiction, there always exists a time t’ > ¢ where f wr(fl;x

mln
O
Lemma 7. Suppose at time t, f(t) < Si;)lx Then, there exists a finite time

min
t' >t where fmm < withy for all T >t
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Proof. Suppose at time t, f(t) < wr(nztx First, by Lemma 5, wr(;g)m < wr(ﬁzlx for

min

all 7 > t. As a result, for all 7 > ¢,

1
up(wit, =) > up(a, 2 + B,Va > w)

max? w max-*

which implies there exists a time ¢’ > ¢t where for all a > w,(rt,;x and all 7 > ¢/,

(1) (1)
Ui = Ura
Therefore, by Claim 2, for all 7 > ¢/, it is impossible for at least one a > wr(ﬁlm
to have x( ) > 0, but xij) o =0. Thus fmlel < w,(é&x for all 7 > t'. O
Lemma 8. Suppose at time t, wﬁigx =5 for some k € {2,...,D}, x(t Wl <
k+1 , and fgl)n = ,(I?ax Then, there is a finite time t' > t where fr(nlel < wr(na)x

for all >t

Proof. Suppose at time t, fmm = wr(ﬁzlx First, by Lemma 7, there exists a finite

time ¢/ > t where f( ™) < wﬁnzlx for all T > t/, so suppose f( T w,(ﬁglx for all

min

7 > t'. Then, by Lemma 3, x(T) = xq(u) for all > t’. Note that since k > 2,

there exists a smaller action than wl(rtléx wﬁﬁgx -5 € A. Then o:(T()t> < D—;k-i-l

Wmax

implies for all 7 > t/,

1 . 1 1 .
up(wily — Bﬂ%(u)) > (1 - D—k—&—l) : (1 —wi + D) = up(wihe =)

which implies

 _ L o)

@) (1)
uy (wmax D’ w )

- uf (wmax7 €z

is a constant, positive value for all 7 > #'. Therefore, there exists another time
t* where

(™) (")
Ut utn-s = Vs,
Since fInm = w,ﬁﬁéx for all 7 > t/, then we must have z; )m > 0, but by Claim 2,
Wmax
20 (t
ity = i
which immediately implies fmm < wr(rtlzm
Next, suppose at time ¢, fngl)n < wl(ﬁix and 2 w < ﬁ. Then, we will
wfwmax
show it is impossible at time step ¢ + 1 to have xch_ ) — 0 for all a < wr(é;x.
To begin, since xiu) o < D%k“ and uf(wﬁﬁ&x,x&)) > uy(a, xq(ﬂ)) + % for all
a > wil,
1
uf(wgrgx - Bvxg)) > uf(a,xgj)),Va > wI(Ii)lX (1)
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; (t)
First, suppose x wl®)

)
x>0,

> (0. By Claim 1, this implies for all a > wgéx where

1

syWmax — 5

7! —alf) =nUl L —nUp (2)

1
f wnmx D

and for all a > wﬁﬁzm where x(ftl =0,

1
fiwmax— D

(t—1) (t—1)
Ui > Ura )
Then, suppose x(t+%2) , = 0 and there exists a > wﬁﬁzx where ng’:l) > 0.

This implies T
v > ut)

[ Wsmax— %

so by inequalities 1 and 3, it is impossible for such an a to have ngzl = 0. So, it

must be the case that x(t) > 0. Then by the KKT conditions,

x(ft,+1)<77UJ(“f) ”U(t) () 1

Wmax— 15

Subtracting both sides by equation 2 and applying inequality 1 implies
(t+1) @®

zy, <z,

Since this is true for any a > wr(é;x, then

DIELID

(t)

a>will, 4> Wmax

which implies by the primal constraints that it is impossible for all a < wr(rtl;x to

(t+1) (t+1)

have 2 ;** = 0 and this contradicts a:f o =0.
Next, suppose x;) Oemp = = 0. Then by Lemma 2 there exists fmm <a* <
Witk — & such that
Uj(cta*l) > U(t Y Va # a* (4)
This implies, by Lemma 2,
Ul 2 U Yz i, 5)
FRTISO .

Then, if there exists a > w,(éix where x;t,:l) > 0, but all / < w,ﬂﬁx have

mgcf:,l) = 0, then by Claim 2,

®) 5 ®
U > Ul
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which along with inequality 4 implies
uf(a,xg)) > uf(a*,xq(j)).
However, by inequalities 1 and 5,

UJEt) o > U(t)

1wmax7% fra2
so by Claim 2, if :cgle) > 0, then x;t) @ 1 > 0which contradicts all a < wr(ééx
’ yWmax —
have xgcf;r,l) =0.
Therefore, in all possible cases, fr(lf;l) < wfrgx Further, by Lemma 4, it is also

the case that )
(t+1) (t)
Tl S Fwowie SD_k+ 1

so we can conclude f (1) wr(ﬁéx for all 7 > ¢.

min

O

Lemma 9. Suppose at time t, willy = % for some k € {2,...,D}, x(t?wmx <
D%}Hl, and fglzl < wih for all T > t. Then, there is a finite time t' > t where

t t
Winax < Whihx.

< wgéx for all 7 > t. Then, we will show there must be

another finite time ¢’ > ¢ where ) @ = 0. Then by Lemma 1 this implies it is

(t) 0! () (t)

also the case that zq, , = 0 for all @ > wmax, and we can conclude Wyax < Winax-

First, note that since k > 2, there exists a smaller action than wgéxs wr(é;xf % €

Proof. Suppose f{7)

min

: () 1
A. Then, since @ ) < o=FFD
(t) [0 (t) .t
uf(wmax - 57$w ) > uf(wmax3 Loy )
Further, since fr(nTlL < wr(,f)ax for all 7 > t, by Lemma 4 either 27 @ =0or

W, WA
o < 2" «y for all 7 > t. Then, this implies by the definition of the
W, Wmax W, W

firm’s utility funcr}sxion that for all 7 > ¢,

1
up(wy — =, 2D) gy, 25)) > up(w?)

max D max’ max D

1

7x'(uf)) _uf(wr(rﬁ)axa fﬂg)) > 0

This implies there exists a time ¢t* where for all 7 > ¢*,

U(T) _ U(T)

(t) 1
frwmax— D fiwmax

()

T (t) 1
frwmax— 1 Winax



and since

by Claim 2, we can conclude

x;T) o =0,Vr>t".
Wi

So, there must always be a time t* > ¢ where either x(t*)m =0or x(t*)m >0

>Wmax W, Wmax

and x?) @ =0forall 7> t*. The latter case implies that for all 7 > ¢*,

:wmax

() _ -1
Vot = Vil
However, since k > 2, % is a lower acceptance threshold for the worker than
wr(,ﬁ;x. Then, by the worker’s utility function

1 1
wo(ef), 5) =Dl -az= (1 -afy) - 5. (1)

1
az i

Note that by the fact that an acceptance threshold of 0 for the worker cannot
get more utility than an acceptance threshold of %, then by Lemma 1

1
Uﬂff,)o = qu)t)i > U, 1(vt,)a7va “D
' D
for all time steps t, so by Claim 1 it is always the case that mg)o =2, >0
s w, 3y

This implies that when D > 2,

1
uf(ﬁ,xgj)) > uf(O,xg)),Vt.

Therefore,

UJE“5 > UD, vt
So, by Claim 2

x;t)% > x&%,Vt.

By the primal constraints, this implies x;% < % for all ¢, so combining this fact

with the lower bound 1, then for any time step t,

1
2D’
Therefore, since the cumulative utility of the offer wl(ri)lx stops growing after time
t*, there must be a finite time ¢’ > t* where

Ui}t&)i > Ui}tll) +
"D "D



and by Claim 1 and the primal constraints, it must be the case that 2@ w =0

W, Wmax
q Tude wl). < w®)
and we can conclude Wmax < Wmax-

O

Lemma 10. Suppose at time t, wr(ﬁlx = ﬁ for some k € {1,. -1}, f]g;zl <

wgéx, and :vg)w(,) > 5T k+1 for all T > t Then, for any € > 0 there exists a

time t. >t where ( ( ) T )) is in an e-mized Nash FEquilibrium.

) (t) )
Proof. Suppose at time ¢, fme < wWmax and xunggx > 5o k+1 for all 7 > ¢.
(t)

First, by definition of wmax and the firm’s expected utility function,

1
( I(Ti‘i)a‘x7 g))zuf(a,xg))+57Va>w(t) (1)

max

This implies there exists a time ¢’ > t where for all 7 > t/

U(T) O UJ(CT) 2 Ya > wil).
wlnle "7

Then, by Claim 1, for each a > wfﬁéx and all time steps 7 > ¢, it is impossible
for
27 >0, x(T) > 0.

f Wmax

By expression 1, it must be the case that for all 7 > ¢/,

33502—0 Va > wlt), (2)
Next, since
I A
wwfnlx*D—k’—i—lvvq— t,
then for all 7 > ¢,
1 1 D—-—k+1
w® = 2y < (1=
_D—k
)]
= (o)

By Lemma 2, if uf(w%%( — %, (T)) < uf(wr(,ﬁ;x,xg)) then it must also be the

case that for all a < wmax,

ug(a, ) < up(wl) 2, vr > t.

max)

Combining this with expression 1, we can conclude for all 7 > ¢,

up(w® ., 2) > up(a, 2(0), Va # wd) 3

max
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We now break into the individual cases of fmm = wglx for all 7 > t and

fmm < wl(ﬁlx for all 7 > ¢ to finish the proof. It is sufficient to consider these two

cases because after time ¢’ where expression 2 becomes true, then if f,.° ) < wr(rtlztx,

but there exists a time ¢t* > ¢’ where fr(rfm) = witly, then we 1mmed1ately have

z:;t )m = 1 and the first case below shows this implies convergence.

sWmax

In the first case, suppose fmm = wr(ﬁzm for all 7 > t which implies for all 7 > ¢,
ngi =0,Ya < w)

max*

Combining this with expression 2, we can conclude that it must be the case that

(T) w =LVr> t.

f Wrnax
Therefore, there exists a finite time where the firm purely offers wr(ﬁzlx for all
future time steps and by expression 3, this offer will always be a best response
to the worker’s strategy. Further, wﬁgx is the largest acceptance threshold
with non-zero probability by definition, it is impossible for the worker switch

acceptance thresholds to get more utility than wﬁﬁgx So, any mixture over

acceptance thresholds a < wl(rtllx is a best response to x(T) o =1 Therefore,

f Wimax
we can conclude the agents have converged to the strategy profile (xg ),ng ))
and that the strategy profile is a mixed Nash Equilibrium.

(1) (1) (1)
In the second case, suppose f,:;; < Wmax, but xw,w,(;f;x > R k+1 for all 7 > ¢.
(1)

Let ¢’ > t be the time where expression 2 guarantees offers greater than wmax get

0 probability mass in all future time steps. Further, the following two properties
must hold in this case

S S 4
xw wmax D k+ 1’ ’ ( )

and there exists a t* > t' where

t
;ﬂjr(xflx - f a ,Va 7é wmax (5)
1 ) .
By Lemma 4 I(T,ZS)QX < xi:) o when fglgl < wr(é;x’ o m(rj-vt%);x < D%k“ "
27 ) = ﬁ, so property 4 must hold. Next, if for all 7 > ¢’ there exists
w7wmax
fmm <a< wr(nzlx where
T >0

then by the primal constraints this implies

> x§,)>§

O <o),

min —
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so by the worker’s utility function

1 1
uw(x;‘l—)a E) Z uw(x}7)7wfr€)ax) =+ ﬁa
since a lower acceptance threshold, % gets at least % more utility than the

acceptance threshold wfﬁgx with probability at least % This implies there exists
a time t* > ¢’ where

gt g 51

1 (
w5 w,wm;x

which implies x(t )(t) = 0. Therefore, property 5 must be true as well.

Now, by property 4 “then by the definition of the firm’s utility function, for all

T>t )
up (e all)) > up(wfy - 5.al0),

max? Il’l ax D )

so by Lemma 2,

up(wit, =) > us(a,20), Ya < w)

maxv max’

and combining this with expression 1,

up (Wi 24)) > up(a,ai))), Ya # wiil, (4)

max7

Next, by property 5, Claim 2, and expression 4, then for all 7 > t*

U(‘r-i—(})) _ylth U(T)(t) _ U)(‘,T) >0,Va # wmax

Fawiiax fra wils

Then, by Claim 1, this implies for all 7 > t* and for all a # wr(ﬁzlx where x(T) >0

and J:(TH) > 0,
(t+1) (t+1) (1) (1)
RO S N A
Further, it cannot be the case that a:(ﬁ(lt)) =" y while ngﬂ) < argfg for all
yWmax fiwmax ’

such a # wfflzlx because this implies

Z x(T-‘rl) < Z $(T) =1,

acA acA
which would violate the primal constraint at time ¢t + 1.
So, we can conclude x(TI(ltg > x?) @ forall 7 > ¢*. Since for all a > wl(ﬁzm,

1’5@2 =0 for all 7 > # and t* > ¢/, then this immediately implies

> V< 3 vz

f(7+1)<a<w$,§) f(T) <a<wfn;x

min min —
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So, by the primal constraints, we can conclude

: (r _
dm o Y ay, =0,

7 <a<wifl

and
lim (" w =1L
T—00 f,wmax

Therefore, for any € > 0 there exists a time ¢, where

2" w >1—eVr >t

s Wmax

By expression 4, the offer wgéx is a best-response for the firm for all 7 > ¢, so

2" & >1—e€implies

sWmax

up(@$7),2D) > up(ay, ) — €, Vo € A(A).

Further, :L’(,T) @ > 1 — € implies the worker gets at most ¢ more utility by

yWmax

lowering their acceptance threshold from wr(rtl)ax, so we also have

Uy (ng) L2y >y, (ng) ,Th,

) — €.V, € A(A).

Therefore, the strategy profile (a?gfé)7 xg)) is an e-mixed NE. O

35



Finally, we prove the main theorem of this section.

Theorem 11. Suppose agents learn strategies for GV using Algorithm 1 with
=0, anyn > 0,D > 2, and arbitrary initial conditions xq(i,),a:gcl e A(A).

Then, for any € > 0, there exists a finite time t. where (x; ),xgv)) is in e-Nash
Equilibrium for all T > t..

Proof. To prove the theorem, we will show that, regardless of the initial con-
ditions, the agents must always reach or approach a mixed Nash Equilibrium
(NE) asymptotically, such that we can conclude the agents end in an e-NE at
the last iterate.

We begin by describing all the possible conditions the agents’ strategy profile,
(ZC}), scg)), could satisfy at any time ¢. Then, we use induction to show there is
always a finite time where the agents are in one of two conditions for all future
time steps. We conclude by showing that this implies the agents have converged
to an e-NE for any ¢ > 0.

To begin, at any time step t,

k
4 &
wmax D K
for some k € {1,..., D}. Then, exactly one of the following conditions is satis-

fied by the agents’ strategy profile at time ¢.

1wl < fmm

2. witle = fl(rfi)n and x:?wr%;x < D—1k+1
3. fmm withy and a:w)ng < D—#ch
4. wglx = fr(rfi)n and xg,)wr%;x > D%kﬂ
5. fmm wit)y and xw)w[(‘gx > 5ErT

Now, we consider each condition separately, and show the possible conditions
that can be satisfied in time step ¢ + 1, given the condition satisfied at time step
t. We say the agents move to condition ¢ if ( (t+1) ;USH)) satisfies condition ¢
for i € {1,2,3,4,5}.

First, suppose (x; ), xq(l,)) is in condition 1. Then, in the next time step, either

flgf;l > wr(ﬁ:xl ) and the agents remain in condition 1 or fg;;l) < wﬁ’i;@} ) and the

agents move to condition 2, 3, 4, or 5.
Next, suppose (ng), zg)) is in condition 2. First, by Lemma 3,

xv(j+1) = xg)v
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(t+1)

so it cannot be the case that the agents move to condition 4 or 5. If, f . =~/ >
wr(rt,;fxl), then the agents move to condition 1. Next, if fnfltl) = f(tl)n, then

the agents remain in condition 2. Finally, if f (¢+1)

min
fr(lfitl) < wihD since f(tm = wit = wli! and the agents move to condition 3.

< f i, then this implies

Next, suppose (ng), xg)) is in condition 3. First, by Lemma 4,

(t+l) (t)
b <T 7 oy
w sWmax W, Wmax

If (H_l(t) - 0 then by definition wmax 7é wl(éc)ixa 50 by Lemma 5’ ngxl) <
(t)

wmax- Now, the agents can move to condition 1, 2, 3, 4, or 5, with the new
(t+1) 1) _ . (1)

Wmax value. Otherwise, if °" ;) > 0, then by Lemma 5, Wmax’ = Wmax. Since
w7 max
:U(H_l)t) < 2™ @ » then the agents cannot move to condition 4 or 5. Further,
W, Wmax W, Wmax

since wr(rf;fxl ) = wg?ax, then by Lemma 8, ffrf;l < wr(ﬁ;(l ), and the agents cannot

move back to condition 1 or 2. So, the agents remain in condition 3 in this case.

Next, suppose (ng), m(uf)) is in condition 4. First, by Lemma 3

D = ),

so the agents cannot move to condition 2 or 3. Next if fnfltl) > witl, then
(t+1) _

the agents move to condition 1. If f.. f .,» then the agents remain in

condition 4. Otherwise, if f(t+1) f(t) then since f(tln = wfxgx = w,(ﬁ;xl), this

min min?
(t+1) (t+1)

implies f < Wmax  and the agents move to condition 5.

min

Next, suppose (argc), xﬁu)) is in condition 5. First, by Lemma 4,

O] (t)
Pt < Pl
If frrflfll) > wgixl), then the agents move to condition 1. Next, if (tﬂ()t) >
W, Wmax
k+1 and fg;l < wfﬁi}l), then the agents remain in condition 5. Next, if
(H_l()t) > 5 k+1 but fr(rfltl) ﬁiat}), then the agents move to condition 4.
W, Wmax
Next, if 0 < xSJ:(),;x < m, then the agents move to condition 2 or 3.

Finally, if x¢ @ =0 then by Lemma 5,
w)wm'xx
1
wiih) < Wik,

and the agents move to condition 1, 2, 3, 4, or 5.

Next, we show there exists a finite time where the agents remain in condition 4
or condition 5 for all future time steps. First, Lemma 5 shows that the value of
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Wmax 18 NoON-increasing in all time steps, and further the number of wpy.x values
is |A|. So, it suffices to show for each unique wmax value that either the agents
must remain in condition 4 or condition 5 for all future time steps or the value
of wmax must decrease in finite time.

Suppose (ng), xg)) is in condition 1 at time ¢. From the cases above, the agents
either remain in condition 1 or move to one of the other conditions, and Lemma 6
shows that it takes finite time for the agents to move to condition 2, 3, 4, or 5.
Further, Lemma 7 shows that once agents leave condition 1 for the first time
per unique value of wpyayx, it takes finite time to ensure the agents never enter
condition 1 again for that wp,.x value. So, we may assume that the agents never
enter condition 1 for the remainder of the cases. Next, if the agents are in con-
dition 4 or 5, but don’t stay there for all future time steps and wmyax does not
decrease, then there must be a finite time where the agents move to condition
2 or 3. Next, if the agents are in condition 2, then from the cases above, they
either remain there or move to condition 3, and Lemma 8 shows that it takes
finite time for the agents to move to condition 3. Then, from the cases above,
agents must stay in condition 3 until wpax decreases in value, and Lemma 9
shows it takes finite time for wy,., to decrease. Therefore, for each unique wyax
value, either it takes a finite amount of time for its value to decrease, or the
agents never leave condition 4 or 5.

Finally, in the base case, suppose at time t, w,(f,zlx = %. Note that since

Uy = U(t)l Vit
then by Claim 2, this is the smallest value in A that w,(ﬁ()ix can be. By definition
of Wax, this implies x( )

of condition 4 and 5 for D > 2 Then, Lemma 6, along with the fact that the

lower bound of f iy 15 also 5, shows that it takes finite time for flgltl)n = ](ﬁ()ix

Therefore, the conditions for the agents being in condition 4 are satisfied at the
lowest value of wpax. So, we can conclude there is always a finite time where

the agents are in condition 4 or condition 5 for all future time steps.

1 >4 5 which satisfies the probability mass lower bound

To finish the proof, Lemma 10 shows that if agents are either in condition 4 or
condition 5 for all future time steps, they must converge to an e-mixed NE for
any € > 0. O

B Sequence Form Representation of 2-Round
Alternating Bargaining Game
A sequence o is a sequential string of actions an agent must take to get to

some node in the game tree. For example, if agents are at the payoff node
(1 — a;,a;), then the sequence the firm took is oy = a; and the sequence the
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worker took is o, = A,,. The sequences and associated payoffs for the two
round bargaining game parameterized by discount factor 0 < § < 1 are given in
the table below with the firm’s sequences on the rows and the worker’s sequences
on the columns where a,b € A are arbitrary offers in A. The line — indicates
that the combination of sequences does not result in a terminal node.

A, R.b
a | (1—-a,a) -
ady — 0(b,1—b)
aRy — 4(0,0)

Let X; be the set of all terminal sequences of agent ¢ for ¢ € {f,w} and let ()
represent the root node of the extensive form game tree. Then,

Y ={0,a,ady, aRpla,b € A}
Y = {0, As, Robla,b € A}

Next, let I; be the information set of agent 7. Since our game is complete
information and perfect recall, for each I € I;, I is a singleton set with one node
h and, further, there is a unique sequence o; € ¥; that leads to h. For each
I € I, let ext(I) be the set of extensions of the unique sequence op, € ¥; that
leads to the node h € I by 1 valid action in ;. For example, if h € [ is the
node corresponding to the firm responding to a counteroffer of b € A from the
worker after giving an initial offer of a € A, then o}, = a is the unique sequence
leading to the node h € I and

ext(l) = {adAy, aRp|b € A}.

Next, a realization plan represents the probability mass an agent puts on reach-
ing each terminal sequence. Formally, r; : ¥; — [0, 1] such that

’I"i(@) =1
Y (et =ri(0) VI e I,
ot €cext(I)
Ti(a) > 0 Yo € E,L

From a realization plan r;, a behavioral strategy of agent ¢ can be recovered.
Let 0; € ¥; where o; is the unique sequence leading to I,, € I;. Then, let
o;a; € ext(l,,), and the behavioral strategy at action a; is:

ri(o;a)

5i(fai,0iai) = 7‘1‘(0’1‘) .

Let U;Z) ({r(_Ti)}lgTSt) be the cumulative expected utility agent ¢ gets at terminal
sequence o € 3; \ {#} through time ¢:

t
Ui(’t; {7 hersr) = Z ui(o, 7))
=1
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where, for all first round offers a € A and second round offers b € A,

(1-0a) 7 (4s) o=a
ug(o, ) =144- borg)(Rab) o =aly
(5-0~rg)(Rab) o=aRy

and

(7)) —A
Uny (TE‘T)7 G) = ¢ Tf (a) (1) 7 ¢
6-(L=0)-r;"(ady) o=Rub

For ease of notation, we will shorten the cumulative expected utility of agent

¢ at terminal sequence o to Ui(f(z and we will refer to the realization plan mass

that agent ¢ puts on terminal sequence o at time t as r. Then, Ui(t) is the

1,0

cumulative expected utility vector of agent i at time ¢ and rgt) is the realization
plan of agent ¢ at time ¢. Finally, let Q; be the set of valid realization plans
of agent 7. We abuse notation slightly and suppose r € Q; is represented as
a vector. Then, the expected utility of a realization plan, given a cumulative

expected utility vector Ul-(t), can be denoted as

<Ui(t) ;7).
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