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Abstract

The event-cost method for the cophylogeny reconstruction
problem has been well studied, but current solutions to the
problem fail to represent the full scope of possible biologi-
cal events. One of those possibilities is called a failure to
diverge event. In this paper we modify a known genetic al-
gorithm called Jane to handle these events, under certain
circumstances. Our algorithm solves these problems in poly-
nomial time, and we prove its correctness. Another short-
coming of existing algorithms is that they can only handle
host-parasite relationships between two species. In response,
we introduce the n-tangled cophylogeny reconstruction prob-
lem, which can represent the coevolution of many species,
whose relationships do not necessarily need to be that of
host-parasite.
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Chapter 1

Introduction

An important biological problem is that of determining if two species co-
evolved, and if they did, how they might have done so. More specifically,
of importance is the ability to reconcile two phylogenetic trees, a host tree
and a parasite tree. This is called the cophylogeny reconstruction problem.
Many attempts to solve this problem use event-cost methods. These meth-
ods seek to minimize a cost with respect to some metric, usually with a cost
for each event where the parasite tree doesn’t naturally match with the host
tree. There are many possible different types of events. Most commonly,
there are four event types considered: cospeciations, host switches, losses,
and duplications.

Various methods have been used to solve this problem. [2] does so op-
timally, but takes exponential time in the worst case. TreeFitter, Tarzan,
CoRe-Pa, Jane, and others use heuristics instead [10, 7, 8, 3, 1, 4]. They
differ from each other in several ways. They all take polynomial time, but
some don’t allow all four different events to occur, such as [4], which only
allows duplication and loss events. Others, such as [1], allow solutions that
have timing inconsistencies.

In this paper, we improve on the Jane algorithm, which is a genetic
algorithm using the event-cost model with all four of the aforementioned
event types [3]. We improve the algorithm by describing a modification that
results in a polynomial-time algorithm that also includes the ability to use
another kind of event, called a failure to diverge event.

We also consider a novel problem that generalizes the cophylogeny recon-
struction problem, which we call the n-tangled cophylogeny reconstruction
problem. We motivate this new problem by giving an example where the
event-cost method results in a mapping that is not symmetric. That is, the
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minimum-cost mapping of some tree A onto some tree B does not have the
same minimum-cost mapping as B onto A. To fix this, we introduce the n-
tangled cophylogeny reconstruction problem, which not only has symmetry,
but is able to both describe a greater variety of coevolutionary possibilities
and describe the coevolution of an arbitrary number of species. We motivate
the introduction of this problem by giving an example of a pair of trees such
that the optimal solution of the first tree onto the second does not have
the same cost as the optimal solution of the second tree onto the first. We
also give a polynomial time algorithm for the timed version of the 2-tangled
cophylogeny reconstruction problem.

In Section 1, we introduce the cophylogeny reconstruction problem and
an approach to solve it called Jane. We also introduce the failure to diverge
event. In Section 2, we describe an algorithm for solving the cophylogeny
reconstruction problem with failure to diverge events. We then prove its
correctness under certain restrictions. In Section 3, we introduce the n-
tangled cophylogeny reconstruction problem, motivate its introduction, and
give a polynomial time algorithm for the timed version of the 2-tangled
cophylogeny reconstruction problem. Finally, in Section 4, we contemplate
avenues for future research.

1.1 Cophylogeny Reconstruction

In the cophylogeny reconstruction problem, we are given a host tree, a par-
asite tree, a mapping between the leaves, or ‘tips’, of the two trees which
represents the relationship between extant taxa, and a cost associated with
each possible event type. The four possible event types are the following:
Cospeciation is when a speciation event in the parasite tree occurs at the
same time as a speciation event in the host tree, so that two non-leaf nodes
in the trees are identified (Figure 1.1 (a)). Duplication is when a speciation
event in the parasite tree occurs between speciation events in the host tree,
so that a node of the parasite tree is identified with an edge of the host tree
(Figure 1.1 (b)). A host switch is a duplication followed by one of the two
descendants of the node in the parasite tree moving to a different edge on
the host tree (Figure 1.1 (c)). A loss is when a speciation event in the host
tree occurs between speciation events in the parasite tree, so an edge of the
parasite tree is identified with a node of the host tree (Figure 1.1 (d)).

Under the event-cost model, the objective of the problem is to find the
mapping of the parasite tree to the species tree that minimizes the total cost,
where there is a cost associated with each of the four event types. When
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(a) Speciation (b) Duplication (c) Host Switch (d) Loss

Figure 1.1: Types of events

all of these events are allowable, this is an NP-complete problem [6]. For
more general information on the cophylogeny reconstruction problem and
its variants, see [9, 5].

Figure 1.2: Example cophylogeny reconstruction instance

An example is given in Figure 1.2. The dashed lines represents the
tip mapping. Since the two trees are not isomorphic, it is necessary to
introduce events to map the Cootie tree, the parasite, onto the Groody
tree, the host. Figure 1.3 gives two possible mappings, i.e. solutions to
the cophylogeny reconstruction problem. Each use a different set of events,
leading to different-cost solutions.

1.1.1 Jane

Because the problem is NP-complete in general, Jane uses a genetic algo-
rithm [3]. It maintains a population of explicit timings of the host tree. An
explicit timing of the host tree is one where all non-tip vertices are totally
ordered, so no two vertices are allowed to be at the same time. This allows
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Figure 1.3: Two mappings of the Cootie tree onto the Groody tree from
Figure 1.2

Jane to forbid timing inconsistencies to occur. A timing inconsistency is
when the placement of host switches imply that some vertex x occurs before
another vertex y but also that y occurs before x. Timing inconsistencies
may arise in some approaches to this problem, such as [1], but Jane does
not allow them. On each of these timed trees, it then employs a dynamic
programming solution to map the parasite tree onto the host tree. The
cost given by this solution serves as a fitness function for the population of
timed host trees. New timings are created with a crossover operator. This
crossover randomly changes the timing of a subtree.

1.1.2 Failure to Diverge Events

One goal of this thesis is to modify the Jane algorithm to include another
type of event, called a failure to diverge (FTD). This is when a parasite
species associated with a host species continues to associate with both of
that host’s children. That is, a single edge of the parasite tree is identified
with two different edges of the host tree.

In Figure 1.4, the b parasite species maps to two host species. Thus an
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Figure 1.4: Example of a problem requiring an FTD event

FTD event is required to explain the mapping. On the right, an example of
a solution is shown.
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Chapter 2

Modifying Jane

We now wish to modify the Jane algorithm to include failure to diverge
events. Now, the mapping of the parasite tree no longer needs to be isomor-
phic to the original parasite tree. We propose a model to represent this that
is both biologically-reasonable and general: when the parasite speciates, it
may speciate from either of the edges representing the ancestors of the tips
that failed to diverge, but not both.

The strategy this thesis takes to solve the cophylogeny reconstruction
problem with failure to diverge events is to leave the genetic algorithm
alone. Only the fitness function is changed. It now consists of a wrap-
per around the dynamic programming that runs multiple iterations of the
dynamic programming algorithm. This approach finds the optimal mapping
given a explicitly timed host tree. The optimal mapping may include timing
inconsistencies, but the algorithm guarantees a mapping that has the same
cost but no timing inconsistencies by changing the timing of the host tree.

Thus, given an explicitly timed host tree, we wish to find a polynomial-
time algorithm that finds the minimum cost matching between the host tree
and the parasite tree.

In order to do this, we must impose several restrictions on the matching.
The most important of these is that we only want to consider host switches
when they are absolutely necessary. Thus the cost of a host switch must
be sufficiently high to discourage their use. It turns out that the cost of a
host switch must be high enough so that some portion of the parasite tree
can undergo duplications instead of host switching from and then back to
an edge of the host tree. The specific value of this cost is unimportant, so
we will refer to this cost as being ‘arbitrarily high.’

Furthermore, we assume that the locations of all FTD events are fixed.
It is clear that when one parasite tip is mapped to more than one host tip,
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there must be a FTD event. To simplify the algorithm, we assume that the
event must occur at the vertex that is the least common ancestor of those
host tips.

Let v be the vertex in a host tree that is the least common ancestor of
two tips mapped to the same parasite tip. Let H ′ be the subtree whose root
is immediately above v. Since the host tree is binary, H ′ in turn has two
subtrees. Given H ′, we call these two subtrees H ′L and H ′R.

Lastly, we restrict the problem so that no subtree of the parasite has tips
mapped to both H ′L and H ′R of the host subtree or outside the host subtree.
This prevents us from requiring host switches.

In summary, the restrictions are:

1. Host switches have arbitrarily-high cost.

2. FTD events are forced to occur at the least common ancestor of the
two host switches mapped to the same parasite tip.

3. Let P ′ be the smallest subtree of the parasite whose tips are mapped
to H ′, the host subtree rooted immediately above the FTD event. P ′

has no tips mapped outside of H ′, and for every subtree T of P ′ that
is rooted at an ancestor of the tip mapped to the two host tips, T ′

does not have tips mapped to both H ′L and H ′R.

We will refer to these as restrictions 1., 2., and 3.
Assuming these restrictions hold, we now present an algorithm to find the

least cost mapping of parasite tree to a timed host tree. It is a modification
of the dynamic programming in Jane.

Algorithm 1.

1. Find the least common ancestor for every pair of host tips mapped
to the same parasite tip. These vertices are the locations of the FTD
events. We will run the DP algorithm of Jane on each subtree of the
host rooted immediately above these vertices. Call this subtree of the
host H ′. For each H ′, we consider the smallest subtree of the parasite
whose tips map only to this subtree of the host. Call this subtree P ′.

2. We now modify P ′ by ‘splitting’ it into two trees: Let a be the tip
of the parasite that is mapped to two host tips. Let T1, . . . Tk be the
subtrees of the parasite tree rooted at the vertices of the ancestors of
a. This tree is split in two, called P ′1 and P ′2: The new trees both have
an edge for a, and subtrees coming off of that edge. If Ti has tips in

8



H ′L, then it is one of the subtrees coming off the a edge in P ′1, and
similarly if the tips map to H ′R, then it is one of the subtrees coming
off the a edge in P ′2. This is shown in Figure 2.1. Note that every Ti
is assigned to either P ′1 or P ′2. All of the tips of P ′1 map to H ′L, and
similarly P ′2 to H ′R. Then the DP algorithm is run on the H ′L subtree
of the host with P ′1 and the H ′R subtree of the host with P ′2.

P ′

a
T1 T2 Tk

(a) Original parasite sub-
tree

P ′1

a
Ti1 Ti2 Tim

(b) New parasite subtree
whose tips map to H ′

L

P ′2

a
Tj1 Tj2 Tjn

(c) New parasite subtree
whose tips map to H ′

R

Figure 2.1: P ′ is modified to create P ′1 and P ′2

3. This matching may create a timing inconsistency. We fix this by mov-
ing the vertices of the host subtree. The original parasite subtree
induces a timing given by the order of the subtrees off of the a edge.
This is shown in Figure 2.2. x1 must occur after x2, which must oc-
cur after x3, etc. But this timing is not necessarily respected in the
mapping, as shown in Figure 2.3 (a). For example, if xj1 must happen
before xi1 . To fix this, we change the timing of the host tree. Specif-
ically, we change the timing of the host tree vertices mapped to each
xi. The timing is changed to respect the ordering of the xi’s given by
the parasite tree. For example, in Figure 2.3 (b), xi2 occurs after xj1 ,
so the timing is changed to reflect that. The timings of the Ti’s are
left the same.

This is done for each host subtree induced by an FTD event, starting
with the host subtree closest to the tips.

4. After, the DP is run on the entire host tree (with the modified timings)
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P ′

xk

x2

x1

a
T1 T2 Tk

Figure 2.2: Original parasite subtree showing induced timing

and parasite tree, modified in the following manner: for every edge and
event involved in an above mapping, the DP only considers mapping
the edge in the manner given by the above mappings. For other edges,
the DP runs as it would in the original DP algorithm.

Example 2. Now we give a small example of how the algorithm runs. The
example problem is shown in Figure 2.4.

1. Since there is only one parasite tip mapped to two host tips, there is
only one FTD event, located at the least common ancestor of the two
host tips. This is shown in Figure 2.5.

2. The FTD event occurs at the top of P , so P = P ′. P is then modified
into two trees P1 and P2. This is shown in Figure 2.6.

Then we use the DP to give the lowest cost solution. The solution
that has the smallest cost depends on the costs associated with each
event types. Two solutions are given in Figure 2.7. For the sake of the
example, suppose the one on the right is minimum-cost.

3. Unfortunately, this solution has a timing inconsistency. Recall from
Figure 2.4 that xb follows xc. But in the solution xc follows xb. To
fix this, we switch the order of the host vertices mapped to xb and xc.
This results in the mapping seen in Figure 2.8.

4. Since this is the entire tree, we are done, and the final solution is
Figure 2.8.
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xim

xi2

xi1

Ti1 Ti2Tim

xjn

Tjn

xj2

Tj2

xj1

Tj1

(a) Mapping with timing inconsis-
tency

xim

xi2
xi1

Ti1 Ti2Tim

xjn

Tjn

xj2

Tj2

xj1

Tj1

(b) Mapping without timing inconsis-
tency

Figure 2.3: Fixing timing inconsistencies

H P
xc

xb
a

b

c

Figure 2.4: Example problem

2.1 Proof of the correctness of the algorithm

To prove that this algorithm is correct, we need to show several claims.
First, we show that for a given cophylogeny reconstruction problem with
timed host tree, the algorithm finds the optimal solution (but it may have
timing inconsistencies). Second, we show that any timing inconsistency can
be removed without changing the cost of the solution. And finally, we show
that this algorithm takes polynomial time.

We start by giving an outline of the proof of the first of these, that
for a given cophylogeny reconstruction problem with timed host tree, the
algorithm finds the optimal solution. In order to do this, we prove that
the optimal solution is a solution where the modified subtree of the parasite
given by the algorithm is mapped to the subtree rooted at the FTD event.
This is sufficient, as the dynamic programming solution in Jane is known
to be correct. This is because the subproblem of mapping the modified
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FTD

a

b

c

Figure 2.5: Example problem - locating the FTD event

a b

(a) P1

a c

(b) P2

Figure 2.6: Example problem - modified parasite trees

subtree of the parasite onto the subtree of the host rooted at the FTD
event is solved by the dynamic programming algorithm. Furthermore, the
correctness of the final solution for the problem is correct given the two
claims above, that each FTD subproblem is solved correctly, and that the
minimum-cost solution includes each of these mappings.

Thus we must prove that the optimal solution is a solution where the
modified subtree of the parasite given by the algorithm is mapped to the
subtree rooted at the FTD event. There are two possible ways in which this
could not occur. The first is that the optimal solution maps at least part
of the parasite tree to any other part of the host tree besides the subtree
rooted at the FTD. The second is that while the parasite tree is mapped to
the correct subtree of the host, it is not the modification of the parasite tree
given by the algorithm. We start with the first:

Proposition 3. Let H ′ be the subtree of the host tree rooted immediately
above the FTD event. Let P ′ be the subtree of the parasite whose tips are
mapped entirely to H ′. Then the optimal solution maps P ′ to H ′.

Proof. Suppose P ′ is mapped somewhere else besides H ′ or an ancestor
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a b c a

loss

host switch

speciation

speciation

a b c a

xb

xc speciation

speciation

speciation

Figure 2.7: Example problem - two matchings

a b c a

xb

xc

Figure 2.8: Example problem - final solution with modified timing

of H ′. From restriction 2., the parasite subtree is forced to be rooted at
H ′ or an ancestor of a H ′. From restriction 3., there are no tips mapped
to anywhere else besides H ′, so if part of P ′ is mapped anywhere else, it
must eventually be mapped back to H ′ afterwards. This requires at least
two host switches. Since from 1., host switches have arbitrarily-high cost,
a lower cost-solution would be to remove both of these host switches and
to have never left H ′ (or an ancestor of H ′). Note this may involve using
additional events, like duplications and losses, but it will still have lower
cost. Figure 2.9 shows an example of this. Note in general, there may not
be a single duplication but an entire mapping elsewhere in the tree.

It remains to show that P ′ is not mapped to an ancestor of H ′. Again
from restriction 2., the only events that would allow P ′ to be mapped above
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a a

h.s.

h.s.

h.s.

duplication

(a) P ′ leaves H ′ using host switches

a a

losses

duplication

(b) Host switches are removed, intro-
ducing other events

Figure 2.9: Showing that P ′ must map to H ′ - removing the host switches
introduces losses

the FTD event are duplications. Suppose some subset of P ′ is mapped above
the FTD event with duplications. This causes the solution to have a loss at
the FTD event for every duplication that occurs. But this solution can be
improved, removing those loss events: For every subtree T of P ′ rooted at
an ancestor of the parasite tip mapped to two host tips, the corresponding
node on the ancestor that lies above T may duplicate above the FTD event.
That duplication may be moved below the FTD event, since by restriction
3., all of its tips must map to either H ′L or H ′R of H ′. This is depicted
in Figure 2.10. In Figure 2.10 (a), each of the edges from T1 and T2 may
undergo loss events at the vertex where the failure to diverge event occurs.
By moving them down, as shown in Figure 2.10 (b), none of the loss events
happen. This cannot increase the overall cost, so an optimal solution must
include this modified mapping.

Now we show that not only is the parasite subtree tree mapped to the
correct subtree of the host, it is the modification of the parasite tree given by
the algorithm. Why does the parasite tree need to be modified at all? This
is a consequence of how we model FTD events. When the parasite speciates,
it may speciate from either of the edges representing the ancestors of the
tips that failed to diverge, but not both. This leads to the kind of ‘split’
given in the algorithm: Let a be the tip of P ′ that is mapped to two host
tips. Let T1, . . . Tk be the subtrees of the parasite tree rooted at the vertices
of the ancestors of a. This tree is split in two trees, called P ′1 and P ′2: The
new trees both have an edge for a, and subtrees coming off of that edge.
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a a

x1

x2
T1...

T2...

(a) Part of P ′ is mapped above H ′

a a

x1

T1

x2

T2...
...

(b) T1 and T2 is moved below the fail-
ure to diverge event

Figure 2.10: Showing all of P ′ is mapped to H ′ - Moving P ′ to below the
root of H ′

The subtrees are T1, . . . Tk. However, there are exponentially (in k) ways
to assign T1, . . . Tk to P ′1 and P ′2. It remains to show that we only need to
consider the ‘split’ given by the algorithm.

Proposition 4. The minimum-cost solution includes mappings between H ′L
and P ′1, and H

′
R and P ′2.

We have already shown that P ′ maps to H ′, and we force the FTD event
to occur at the root node of H ′, so it remains to show that other ‘splits’
beside P ′1 and P ′2 must not yield lower-cost solutions.

This is due to the fact that any other ‘split’ of P ′ must give a solution
with host switches. Let A and B be such a pair of trees based on the original
parasite. Without loss of generality, there must be a tip of A that is mapped
to a tip on the other host subtree, H ′R. In order for it to be a valid solution,
the edge must at some point host switch to H ′R, as the two trees are mapped
to H ′L and H ′R below the first speciation of the host subtree. Since there are
no host switches allowed, there is no need to consider this pair of trees.

Now we have shown that the optimal solution must map each modified
subtree of the parasite to H ′. Thus, the algorithm finds the optimal solution,
but it may have timing inconsistencies. We now show that any timing
inconsistency can be resolved.

Proposition 5. Any timing inconsistency of the mapping induced from the
timing of the vertices given by the parasite tree can be resolved.
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We now outline the proof.
It is important to note that no other kinds of timing inconsistencies

are possible either. Timing inconsistencies induced by incompatible host
switches cannot be possible because we use the DP from Jane, which insures
that these cannot happen.

First of all, there are no host switches between H ′L and H ′R of P ′, the
smallest subtree of the parasite whose tips are mapped to H ′, the host
subtree rooted immediately above the FTD event. This is shown above.

Now we resolve the timing inconsistencies. We do so by changing the
timing of the host tree. As in the description of the algorithm, let T1, . . . Tk
be the subtrees of the parasite tree rooted at the vertices of the ancestors
of a. Any mapping of the parasite subtree to the host subtree must map
the roots of each Ti to either of the two edges that represent the ancestors
of a. Mapped to each of these is either a vertex of the host tree or an
edge. However, the parasite tree induces a timing on each Ti such that Ti−1
must come after Ti. But in the matching, if Ti−1 is matched to one edge
that represents a and Ti is matched to the other, this will not necessarily
be the case. To fix this, we change the timing of the host tree to match
the timing induced by the parasite tree. That is, we change the timing
of the vertices and edges that are the ancestors of the tips mapped to a
to the timings given by the timing of the Ti induced by the parasite tree.
Changing timings can potentially invalidate a mapping. Specifically, a host
switch from edge x to edge y may be invalidated if y occurs strictly before x.
However, since there are no host switches between H ′L and H ′R, this cannot
happen between the two subtrees. There may be host switches between two
edges contained entirely in H ′L or H ′R, but the changed timing never changes
the order between Ti’s rooted on H ′L or H ′R. Thus the timings of the Ti’s
may be left alone. Hence timing inconsistencies can be resolved.

We now turn to the last thing that needs to be shown: that the algorithm
takes polynomial time. There are a polynomial number of FTD events, as
there are only a polynomial number of nodes in the tree. It is not difficult to
find each one in polynomial time, as they are located at the least common
ancestor. Creating the modified parasite tree takes polynomial time, as it
just requires finding the smallest subtree whose tips map to the given host
subtree. Running the DP takes polynomial time. Finally, fixing the timings
takes polynomial time, as the required timing is induced by the parasite
tree and hence fixing the timing just requires copying that timing. Thus the
algorithm takes polynomial time.

This concludes the proof that the algorithm is correct and runs in poly-
nomial time.
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Chapter 3

The n-Tangled Cophylogeny
Reconstruction Problem

While our formulation of the cophylogeny reconstruction problem is a pow-
erful way of looking at cophylogeny, it is not all-encompassing. The five
events considered in the previous chapter do not cover all biological possi-
bilities. Two coevolving species may evolve in a mutually beneficial relation-
ship rather than in a host-parasite relationship. In addition, it is possible
for more than two species to coevolve. It is desirable to be able to model
these relationships, which the current formulation does not allow us to do.
This is due to the fact that in the current formulation, the host cannot un-
dergo events such as host switches. Thus we introduce a new problem, called
the n-tangled cophylogeny reconstruction problem. It is similar to the old
formulation, except instead of mapping the parasite onto the host, now all
trees are mapped onto the others, and there may be more than two of them.
We call this mapping a tangle, as now both trees can undergo events.

This removes the asymmetry inherent in the old problem: The minimum-
cost mapping of some tree B onto A is not necessarily equal to the minimum-
cost mapping of A onto B. This kind of symmetry is highly desirable when
the two species do not display a host-parasite relationship.

We show that the old problem does not have asymmetry with an exam-
ple, given in Figure 3.1.

When the cost of cospeciation is 1, loss is 4, duplication is 1, and switch
is 3, the minimal cost solution of A onto B does not have the same cost as
the minimal cost solution of B onto A. This is the smallest known example
of an assymetric mapping. However, there are many larger examples that
can be created using this small one as the basis. For example, Figure 3.2
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A
B

Figure 3.1: Cophylogeny reconstruction problem without symmetry

shows a way of creating larger examples. If T is an unbalanced subtree
on both A and B where tip x on T on A maps to tip x on T on B, then
Figure 3.2 is a cophylogeny reconstruction problem without symmetry. This
shows that there are arbitrarily large examples of asymmetrical cophylogeny
reconstruction problems.

A

T

B

T

Figure 3.2: Larger cophylogeny reconstruction problem without symmetry

This motivates the n-tangled cophylogeny reconstruction problem. More
formally, in the n-tangled cophylogeny reconstruction problem, we are given
n trees, a mapping between the leaves, or ‘tips’, of the trees which represents
the relationship between extant taxa, and a cost associated with each possi-
ble event. The five possible events, for all trees, are speciation, duplication,
loss, host switch, and failure to diverge. The map between tips is given as a
equivalence relation over tips, so that any number of taxa may be associated
with each other.
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Under the event-cost method for the problem, the objective of the prob-
lem is to find a mapping of the n trees together that minimize the total cost,
where there is a cost associated with each of the five events.

A

B

a b c d

speciation

duplication

host switch

losses

Figure 3.3: Example of a 2-tangle

Figure 3.3 is an example of a solution for a two-tangled cophylogeny
reconstruction problem. It is important to note that this mapping can not
be represented by the traditional cophylogeny reconstruction problem. For
example, if we consider B to be the host, then how do we represent the host
switch depicted? It is not clear. Other problems can arise while trying to
do this kind of translation, such as host switching to a species that has du-
plicated. This demonstrates that this problem formulation has considerable
more representative power.

b

duplication

a
duplication

Figure 3.4: Example of two duplications

However, it is important to note that the costs of solutions to this prob-
lem cannot directly be compared to the costs of solutions to the original
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problem. Figure 3.4 gives a small example of a mapping with two duplica-
tions where all four tips are associated with each other. The cost of this
mapping is the cost of not two, but three duplications: the second dupli-
cation is associated with both edge a and edge b, and hence must pay a
duplication cost for each edge associated with it. While biologically reason-
able, this makes costs of solutions difficult to compare with solutions given
by the original problem.

The decision problem version of the n-tangled cophylogeny reconstruc-
tion problem is clearly in NP. Given a target cost, it is easy to check whether
a tangle has that cost.

The n-tangled cophylogeny reconstruction problem also has a timed ver-
sion, a parallel to the timed version of the original cophylogeny reconstruc-
tion problem that Jane solves. In the n-tangled timed cophylogeny recon-
struction problem, each of the trees has an explicit timing, i.e. a total order
on the internal nodes of the tree such that no two internal nodes can be at
the same time.

We now present an algorithm to solve the 2-tangled timed cophylogeny
reconstruction problem in polynomial time, as a first step toward exploring
solutions to the more general problem. We restrict the type of events to
cospeciations, duplications, host switches, and losses.

Here, we largely follow the notation used in [11]. As such, let costco,
costdup, costswitch, and costloss denote the non-negative costs associated
with cospeciation, duplication, host switch, and loss, respectively. Let A
and B be the two trees, and a and b nodes or edges of the tree. Let C(a, b)
denote the cost of the optimal solution for the subproblem comprising of the
two subtrees of A and B rooted at a and b respectively. The solution to the
problem is then

min
a∈AV ,b∈BV

{C(ar, b), C(a, br)}

where ar and br are the root nodes of A and B, and AV and BV are the
nodes of A and B.

Following the strategy used in Jane, we treat C as a dynamic program-
ming table. It then suffices to give a recursive algorithm to calculate C(a, b)
and an algorithm for computing the dynamic programming (DP) table.

Algorithm 6. The DP calculates C by considering edges and nodes in both
trees bottom up. Since only nodes are given an ordering, not all edges are
ordered, so that an edge exists through a range of times determined by its
child and parent nodes. Thus there can be multiple edges that exist at a
given time. It does not matter in the DP table which is calculated first. It
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only matters that C(a, b) is calculated after C is calculated for all nodes and
edges that must be strictly after a and b. This suffices, as the algorithm we
will describe always recurses on a smaller subtree than the tree rooted at a
or a smaller subtree than the tree rooted at b.

Now we give a recursive algorithm for C(a, b). First suppose that a and
b are both nodes in A and B respectively. If they are both tips, then

C(a, b) =

{
0 if φ(a) = b
∞ otherwise

where φ is the tip matching function.
Let ae1 and ae2 be the child edges of a, and similarly let be1 and be2 be

the child edges of b. Let av1 and av2 be the corresponding child nodes of
a, and similarly let bv1 and bv2 be the corresponding child nodes of b. Now
suppose a and b are both non-tip nodes. The only possible type of event is
a cospeciation, shown in Figure 3.5.

a

av1

ae1

av2

ae2

b

bv1

be1

bv2

be2

Figure 3.5: Event possible when associating two vertices (Cospeciation)

The cospeciation term given below considers the following possibilities:
There are two ways to map the subtrees together: either ae1 is associated
with be1 or ae1 is associated with be2 . For each of these possibilities, each
of the two subproblems yield three possibilities for how they are associated:
The child node of b is associated with a, a’s child edge, or somewhere below
a’s child edge. In the last case, it then must be the case that the child node
of a must be associated with the child edge of b. This yields 18 possibilities.
Thus when both a and b are non-tip nodes, but they’re not both tips,

C(a, b) =

{
Co(a, b) if a and b are not tips
∞ otherwise

where
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Co(a, b) = costco + min
(i,j)∈{(1,2),(2,1)}



C(av1 , bvi) + C(av2 , bvj ),

C(av1 , bei) + C(av2 , bvj ),

C(ae1 , bvi) + C(av2 , bvj ),

C(av1 , bvi) + C(av2 , bej ),

C(av1 , bei) + C(av2 , bej ),

C(ae1 , bvi) + C(av2 , bej ),

C(av1 , bvi) + C(ae2 , bvj ),

C(av1 , bei) + C(ae2 , bvj ),

C(ae1 , bvi) + C(ae2 , bvj )


Else one of a or b is a node and the other an edge. Without loss of

generality, suppose a is the node and b the edge. Let bv now denote the child
node of b. In this case, there are three possible types of events: duplication,
host switch, and loss. These possibilities are shown in Figure 3.6.

a
b

bv

ae2

av2

ae1

av1

(a) Duplication

a
b

ae1

av1

ae2

(b) Host Switch

a

av1

ae1

av2

ae2

bv

b

(c) Loss

Figure 3.6: Events possible when associating a vertex and an edge

The duplication term must consider similar possibilities as the cospecia-
tion term does. However, the duplication event associates both child edges
of a to b, and because A has a total ordering on the vertices, the child nodes
of a cannot occur at the same time. This results in 8 possibilities, given
below.

The loss term considers 6 possibilities: There are two child edges b may
be associated with, and for each of those, the child node of b is associated
with a’s child edge, a’s child node, or somewhere below a’s child node.

The switch term must consider a non-constant number of possibilities:
Each child edge of a may be the edge that undergoes a host switch event.
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The child edge of a that host switches may move to any edge in B at the
same time as b. In regards to the other child edge of a, the child node of b
is associated with that child edge of a, that child node of a, or somewhere
below that node.

Hence when a is a node and b is an edge,

C(a, b) =


min


Dup(a, b),

Loss(a, b),

Switch(a, b)

 if a and b aren’t tips

∞ otherwise

where

Dup(a, b) = costdup + min



C(ae1 , bv) + C(ae2 , bv),

C(av1 , bv) + C(ae2 , bv),

C(av1 , b) + C(ae2 , bv),

C(ae1 , bv) + C(av2 , bv),

C(av1 , b) + C(av2 , bv),

C(ae1 , bv) + C(av2 , b),

C(av1 , bv) + C(av2 , b),

C(av1 , b) + C(av2 , b)


,

Loss(a, b) = costloss + min
i∈{1,2}


C(aei , bv),

C(avi , bv),

C(avi , b)

 ,

and

Switch(a, b) = costswitch

+ min
(i,j)∈{(1,2),(2,1)}

min


C(aei , bv),

C(avi , bv),

C(avi , b)

+ min
b′∈BE

′
{C(avj , b

′)}


where BE

′ is the set of edges in B that exist at the same time as b.
Note C is undefined for two edges. This is done to simplify the algorithm,
but because the above two cases (for two vertices and for a vertex and an
edge) do not recursively compute C for two edges, we are able to maintain
correctness.
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Let the size of the larger tree be n. Then this algorithm has a worst-case
running time of O(n3): There are O(n) vertices and edges in each of A and
B, so the DP table is size O(n2). Calculating each of Co(a, b), Dup(a, b),
and Loss(a, b) takes a constant number of look-ups, and Switch(a, b) takes
(worst-case) O(n) look-ups. Hence the worst-case running time is O(n3),
which is certainly polynomial time.
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Chapter 4

Future Work

While we have made significant progress in the cophylogeny reconstruction
problem, there is much more work to do. First, we suspect that the cophy-
logeny reconstruction problem with timed host trees and failure to diverge
events can be solved in polynomial time without the three restrictions we
impose. However, it appears that such an algorithm would have to take a
different tack than the one employed in this thesis.

Second, there is much more work to be done on the tangled cophylogeny
reconstruction problem. We believe it is NP-complete, but that has yet to
be shown. As with the cophylogeny reconstruction problem, it also appears
likely that a genetic algorithm like Jane may give efficient results for this
problem. We have started to work toward this by giving an algorithm for
the 2-tangled timed cophylogeny reconstruction problem.

This new formulation of the cophylogeny reconstruction problem may
yield additional insight into the coevolution of species not defined by a host-
parasite relationship. This thesis starts that process while continuing to
expand our ability to solve the traditional cophylogeny reconstruction prob-
lem.
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